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In this lecture, we will discuss how the different parts of an embryo scale proportionally with the
embryo’s size. Robust scaling ensures that the right body parts are formed at the right locations,
proportional to the size of the organism. We will discuss one particular mechanism that can achieve
robust scaling, called "expansion-repression feedback". We will study this mechanism through
reaction-diffusion equations and "numerical screening". Reaction-diffusion equations describe mor-
phogens and their regulators diffusing, degrading, and possibly reacting with other molecules in a
field of cells/nuclei of an embryo. Numerical screening is a widely used method for computationally
screening hundreds of thousands of parameters in an equation, such as the reaction-diffusion equa-
tion, and find the sets of parameter values that yield the desired biological behaviours. In this lec-
ture, we will discuss how to numerically screen large numbers of parameters in the reaction-diffusion
equations to determine which parameter values enable robust scaling of developing embryos.

I. BIOLOGICAL PHENOMENON: SCALING OF BODY PARTS IN DEVELOPING EMBRYOS

You and I have different heights and body sizes. Yet your and my arms are above our torsos and below our heads.
Your and my legs are below our torsos. Given that you and I can be of vastly different heights, the my arms’ lengths
can largely deviate from those of your arms. But the length of my arms compared to the length of my height, in fact,
would not be much different from those of yours. This also holds true for others animals and in fact, is crucial for
them to properly function given that two animals from the same species will generally have different sizes, based on
how they grew up and their genetic makeup. These facts, that the proportion of one body part relative to another
body part in an organism is the conserved is called scaling. In this lecture, we will discuss an example of scaling in
developing frog embryos and learn about numerical screening, a computational technique that one uses to screen for
regulatory circuits that enable scaling in embryos (but it is also useful in other contexts).

II. MECHANISM FOR ACHIEVING SCALING IN EMBRYOS: EXPANSION-REPRESSION

FEEDBACK

In this section, we study a mathematical model proposed by Danny Ben-Zvi and Naama Barkai that achieves scaling
in developing embryos ("Scaling of morphogen gradients by an expansion-repression integral feedback control" PNAS

(2010)). The model relies on a mechanism that the authors called expansion-repression feedback.

A. Conventional reaction-diffusion of one morphogen cannot achieve robust scaling

Before delving into the expansion-repression feedback that Ben-Zvi and Barkai proposed (and later tested in frog
embryos), let us consider a simpler picture: A single morphogen, Morph, diffusing and degrading in a field of cells.
For simplicity, we will consider diffusion along a line (one-dimensional diffusion) with the cells of the embryo sitting
on the line of length L, one next to the other. Suppose that at the proximal end (x = 0), there is a source of Morph

that produces Morph at some rate ρ. At the distal end (x = L), we can impose at least two types of boundary
conditions:

• Dirichlet condition: We specify M(L, t) for each time t.

• Neumann condition: We specify the outward normal derivative, ∂M/∂n at x = L for each time t. The
outward normal derivative points away from the domain of the reaction-diffusion equation. Thus, at x = L,
∂M/∂n = ∂M/∂x whereas at x = 0, ∂M/∂n = −∂M/∂x

The reaction-diffusion equation for describing the concentration M of Morph on the line is

∂M

∂t
= DM

∂2M

∂x2
−G(M) (1)

http://www.pnas.org/content/107/15/6924
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where DM is the diffusion coefficient of Morph, and G(M) is a function of M and is a degradation rate of Morph
that is either zero or a positive number. A simple example of G that we have been using in the previous lectures is a
first-order degradation: G(M) = αM . Let us now solve Eq. 1 for a special case.

Special case: Steady-state solution of Eq. 1 when there is no degradation: Here we set G = 0 (no
degradation) and ∂M/∂t = 0 (steady-state). Then we have the following Laplace’s equation:

0 =
d2Ms

dx2
(2)

Evidently, the steady-state solution Ms does not depend on the diffusion coefficient DM . To obtain Ms, we must
specify the boundary conditions at x = 0 and x = L. Let us suppose that the source at the proximal end (x = 0)
secretes and "takes away" Morph such that M(x = 0, t) is a constant value M0 at all times (thus Ms(0) = M0). Let
us also assume that at the distal end (x = L), we have a perfect sink (i.e., M(x = L, t) = 0 at all times). Thus
Ms(L) = 0. With these Dirichlet conditions, the solution of Eq. 2 is

Ms(x) = M0

(

1−
x

L

)

(3)

We can check that Eq. 3 is indeed a solution of Eq. 2 by noting that (1) its second-derivative with respect to x
yields zero for 0 < x < L, and that (2) Ms(0) = M0 and Ms(L) = 0 (i.e., satisfies both boundary conditions). So
we know that Eq. 3 is indeed a solution. But how do we know that it is the only solution of Eq. 2? The answer is
that we have indeed found the only solution of the Laplace equation with the specified boundary conditions due to
the following two theorems, one whose proof depends on the other:

Theorem 1 (No local extrema): Given a boundary condition for domain D (which can have any number of
dimensions), a solution to the Laplace’s equation on D that is not a constant function cannot have any local extrema
inside D. Thus the solution’s maximum and minimum values must lie on the boundary of D.
Proof : We will use another fact about Laplace’s equation without proof here - A solution M to a Laplace equation
∇2M = 0 has the property that its value M(~r0) at point ~r0 inside the domain D is the average of all the values of M
on the surface of any sphere whose center is at ~r0 and fits inside D. In 1-, 2-, and 3-dimensions, this means

M(x0) =
M(x0 − a) +M(x0 + a)

2
(solution in 1-dimension: x0 − a and x0 + a are points in interval D) (4a)

M(~r0) =
1

2πR

∫

circle

M(r) (solution in 2-dimensions: circle of radius R inside D) (4b)

M(~r0) =
1

4πR2

∫

sphere

M(r) (solution in 3-dimensions: sphere of radius R inside D) (4c)

The theorem then immediately follows. To see this, assume, for contradiction, that M is not a constant function that
has a local maximum at some point ~r0 inside D. Then by definition of a local maximum, we can find a small enough
sphere that fits inside D and whose center is at ~r0 such that M is smaller than M(~r0) everywhere on the sphere’s
surface. Then the average of all values of M on the sphere’s surface must be smaller than M~r0 , contradicting that
M~r0 must, in fact, be the average. Thus, by contradiction, M cannot have a local maximum inside D. By using the
same logic, it follows that M also cannot have any local minima inside D. Thus theorem 1 holds.

Theorem 2 (Uniqueness theorem): Given a Dirichlet boundary condition for domain D (which can have any
number of dimensions), a solution to the Laplace’s equation on D is unique. Thus we can call it the solution.
Proof : We use theorem 1 to prove this. Suppose, for contradiction, that we have two distinct solutions, M1 and M2

in the same domain D and with the same Dirichlet boundary conditions. Then since the Laplace’s equation is a linear
equation, we must have ∇2(M1 − M2) = ∇2M1 − ∇2M2 = 0. Thus M1 −M2 is a solution inside the domain D as
well. On the boundary of D, M1 −M2 is zero since M1 and M2 take the same values there. By theorem 1, we must
then have M1 −M2 = 0 everywhere inside D since, for otherwise, M1 −M2 would have a local extremum inside D.
Thus M1 = M2 in the end. Thus once we find a solution M1, we have found all the solution there is for the Laplace’s
equation on D with a fixed Dirichlet boundary condition. Thus theorem 2 holds.
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Long story short, theorem 2 tells us that Eq. 3 is the only solution to Eq. 2. Let us now return to the one-dimensional
diffusion of Morph between x = 0 and x = L. The steady-state solution Ms, in fact, allows for scaling. That is,
if we have two embryos - one has length L and the other with length βL - and ML and MβL are the steady-state
concentrations of the two embryos respectively, then

ML(x1) = M0

(

1−
x

L

)

(5a)

MβL(x2) = M0

(

1−
x

βL

)

(5b)

where x1 is the position within the embryo of length L and x2 is the position within the embryo of length βL. Note
that if we scale both x1 and L in Eq. 5a by β, then we obtain

1−
βx1

βL
= 1−

x2

βL
(6)

Thus we can write ML and MβL as

ML(x1) = M0(1− y) (7a)

MβL(x2) = M0(1− y) (7b)

where y is the position divided by the embryo’s length. Mathematically, this is what it means to have scaling.
Biologically, scaling means that the morphogen concentration within an embryo is determined by the distance from
the proximal end relative to the embryo’s total length and not by the absolute distance from the proximal end. But
this scheme is not robust as it strongly depends on M0. Any slight changes to M0 could lead to vastly different
concentration profiles. Moreover, we assumed that Morph does not degrade, which is not true in real embryos. Thus
this mechanism for scaling cannot provide robust scaling in real embryos.

B. Expansion-repression feedback

We now describe a mechanism that can robustly generate scaling in embryos. As in the previous section, we consider
a diffusing morphogen called Morph. Being a morphogen, its concentration M is sensed by cells or nuclei inside the
embryo and determines which type of cells and where they are generated inside the embryo. Let us assume that a
localized source secretes Morph and that Morph then diffuses along one-dimension as before. Let DM be Morph’s
diffusion coefficient and αM be M ’s degradation rate. Then the reaction-diffusion equation for M is again given by

∂M

∂t
= DM

∂2M

∂x2
− αMM (8)

where DM is the diffusion coefficient of Morph and αM is proportional to the degradation rate, αMM (i.e., we have
set G(M) in Eq. 1 to be αMM). Crucial to the authors’ model is that DM and αM are not constants, as we will see
shortly. We impose the following boundary condition at the proximal end: there is a constant flux ηM of M at the
source located at x = 0. At the distal end (x = L), we can assume a number of different boundary conditions. The
authors, in fact, show that their main conclusions are unaffected whether we set a reflective boundary condition (i.e.,
∂M/∂x = 0) or absorbing boundary condition (i.e., M(L) = 0) at x = L. Moreover, the authors consider a second
diffusing molecule, called the expander Exp, whose concentration either directly or indirectly affects DM and the
degradation rate through αM . Thus DM and αM are functions of M and E:

DM = DM (E,M) (9a)

αM = αM (E,M) (9b)

While we do not specfy the functional forms of DM and αM , we impose the following two conditions:

• As the concentration E increases, DM increases. Thus the expander directly/indirectly facilitates diffusion
of Morph.
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• As E increases, αM decreases. Thus the expander directly/indirectly inhibits degradation of Morph.

We also assume that Morph represses the production of Exp, which we characterize through a sigmoidal production-
rate function as a function of the concentration M . Then the following coupled reaction-diffusion equations describe
the Morph and Exp concentrations throughout the embryo:

∂M

∂t
= DM

∂2M

∂x2
− αMM (10a)

∂E

∂t
= DE

∂2E

∂x2
− αEE + βE

T h
rep

T h
rep +Mh

(10b)

Here, Trep is the repression threshold, h is a Hill coefficient, DE is diffusion constant for E, and αE is the degradation
rate for E. We assume a reflective boundary condition for M and E. Eqs. 10a and 10b define the expansion-
repression feedback system. We next analyze these equations, first using analytical estimates and next with a
"numerical screening" method.

1. Analytical approximation

Analytical estimates before numerical simulations almost always provide mechanistic insights into the equations
that the numerical simulations fail to yield. We can analytically approximate solutions to Eqs. 10a and 10b before
numerically solving them. For a complex equations with many parameters like these, it often helps to rescale the
variables, x and t, which means that we measure the length and time relative to other parameters that have dimensions
of length and time respectively (thus x and t would become dimensionless). Practically, we can do this by dividing
Eq. 10a by αM , which has units of 1/time, to get

1

αM

∂M

∂t
=

DM

αM

∂2M

∂x2
−M (11a)

=⇒ τ
∂M

∂t
= λ2

∂2M

∂x2
−M (11b)

where τ = 1/αM is a characteristic time and λ =
√

DM/αM is a characteristic length. We can similarly
rescale Eq. 10b but that is not yet necessary. In the analyses below, we will assume that

DM = DM (E) (Independent of M) (12a)

αM = αM (E) (Independent of M) (12b)

(12c)

Let us now consider what the steady-state solution Ms(x) of Eq. 11b would look like, without actually solving the
equation. Having identified λ and τ as the relevant dimensions enable us to determine the main properties of Ms(x).
First, we note that, in steady-state (i.e., ∂Ms/∂t = 0), Eq. 11b becomes

0 =
∂2Ms

∂y2
−Ms (13)

where y = x
λs

and λs is the steady-state value of the function λ(M,E) (remember, DM and αM are functions of E

and possibly of M). . Thus,

Ms(x) = f(y) (14)

where f is some function. Furthermore, by imposing that the flux at x = 0 - this is −DM∂Ms/∂x|x=0 by Fick’s law
for diffusion - is ηM , we have

ηM = −DM
∂Ms

∂x

∣

∣

∣

∣

x=0

(15a)

=⇒
λsηM
DM

= −
∂Ms

∂y

∣

∣

∣

∣

y=0

(15b)
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Eq. 15b expresses the boundary condition at x = 0 in terms of the rescaled position variable y. At the other boundary
(x = L), we impose a Dirichlet condition:

Ms(L) = ǫ (16)

where ǫ is some constant. Eq. 14 and the two boundary conditions (Eqs. 15b and 16) completely specify the functional
form of Ms(x). We see that Ms(x) is not only a function of y (Eq. 14), it also depends on ληM/DM , according to
Eq. 15b. Thus we can write

Ms(x) = Mλ

(

x

λs
;

λsηM
DM (E)

)

(17)

where Mλ is some function that depends on the functional form of λ. Note that Ms(x) indeed depends on the
functional form of λ because different functional forms of λ can produce the same steady-state value λs. We can
rewrite Eq. 17 in a simpler way by introducing a new function ρs(E):

ρs(E) =
λsηM
DM (E)

(18)

Then Eq. 17 becomes

Ms(x) = Mλ

(

x

λs
; ρs(E)

)

(19)

So far, we have not yet demonstrated if the proposed mechanism, the so-called "expansion-repression feedback",
allows for scaling. To address this issue, we need to determine whether Ms(x) admits scaling as a function of the
proximal-distal length L. Our starting point is to note that increasing E causes an increase in DM and a decrease in αM

- we imposed these conditions on the model. Thus, the steady-state value of Morph’s diffusion length λs =
√

DM/αM

increases as E increases. This means that Morph will travel further away from the proximal tip (x = 0), and thus
we say that the morphogen region expands in the field. But as the concentration M of the morphogen increases
at a given location, the production rate of the Exp will decrease since Morph represses production of Exp - This
is where the term repression in the "expansion-repression" mechanism arises. The repressed production of Exp, in
turn, would decrease the λM and thus Morph field will contract. At this point, without doing calculations, we can
envision at least two possibilities: (1) oscillatory behaviour in which the whole cycle of expansion-contraction of the
morphogen field repeats over and over, or (2) a steady-state value of E is reached. But we know from Eq. 19 that
there is a steady-state of M and thus scenario (2) is what we will get.

To analytically extract the behaviour of Ms(x), Let us assume that Exp diffuses very fast (i.e., DE is large) and
degrades very slowly (i.e., αE is nearly zero). The very large value of DE means that E is essential uniform throughout
the embryo at all times because any inhomogeneous distribution of E along the embryo quickly homogenizes by the
fast diffusion. Moreover, since the degradation of Exp is very slow, if there is a production of Exp anywhere in the
embryo, the Exp will quickly spread to the rest of the embryo and the nearly uniform E will continue to increase over
time until the production of Exp is shut down everywhere. Physically, we know that M will have the lowest value at
the distal tip (x = L) since the source of Morph is at the proximal tip (x = 0). There, Morph must also repress the
production of Exp in order for E and M to simultaneously attain steady-state profiles. This means that at x = L,
we must have Ms roughly equal to or higher than the repression threshold Trep. In other words,

Mλ

(

L

λs
; ρs

)

≈ Trep (20)

Now, suppose that Mλ is an invertible function - that is, it has an inverse function M−1

λ . Then inverting Eq. 20, we
have

L

λs
= M−1

λ (Trep; ρs) (21a)

=⇒ λs =
L

α0

(21b)
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where α0 = M−1

λ (Trep; ρs). Thus we can, at least formally, find the steady-state diffusion length λs in terms of Trep,
embryo’s length L, and the steady-state flux ρs at the proximal end. It is interesting to note here that the steady-state
diffusion length depends on the embryo’s length, unlike in the case of simple diffusion of the Morphogen without the
expander that we considered in the previous section. Plugging Eq. 21b into Eq. 19, we obtain

Ms(x) = Mλ

(

x

L
; ρs

)

(22)

Here, we see that the steady-state concentration Ms of the morphogen scales with the embryo’s length L since it is
a function of x/L, rather than a function of the absolute value of the position x. But the scaling may not be robust -
Ms is also a function of the normalized steady-state flux ρs of the morphogen at the proximal end. Thus fluctuations
in ρ may ruin the scaling that the x/L term achieves.

As an example, suppose that the diffusing Morph degrades via a first-order kinetics (Eq. 11b). Then, as you will
show in problem set 2, we have

ML(x/L) =
ηML

DMµ
exp

(

− µ
x

L

)

(23)

where µ = ln(ρs) − ln(Trep). Eq. 23 tells us that the scaling is partially ruined by the lone factor of L outside the
exponential. If the degradation rate of M is quadratic (i.e., G(M) = αMM/MT in Eq. 1, where MT is a constant),
then you will show in problem set 2 that

Ms(x) =
6DMMT

αM (x+ ǫ)2
(24)

where ǫ = 3

√

12D2

M

αMηM

. In the limit of x ≫ ǫ (i.e., for positions sufficiently far from the proximal end), Eq. 24 becomes

ML(x/L) ≈
Trep

(x/L)2
(25)

According to Eq. 25, a quadratic degradation rate of Morph yields a nearly perfect scaling - the steady-state
concentration of morphogen depends only on the relative position x/L, and no factors of L and x appear by themselves
Eq. 25. But with the quadratic degradation of Morph, the scaling is still not perfect. In fact, when x is comparable
to ǫ (i.e., near the proximal end where Morph is produced), there is no scaling. This agrees with experiments on
embryos in which one observes no or poor scaling near the source.

III. NUMERICAL SCREENING

We have so far used gross approximations (e.g., very fast diffusion and very slow degradation of Exp). But we
would now like to know whether the scaling still holds for less drastic values of the parameters, and if so, precisely
for which values for each parameter. In the previous section, we obtained the functional forms of the equations that
describe the diffusion and degradations of morphogen and expander. Our job now is to iteratively assign different
numbers to each parameter in the equation and check, for each set of assigned values, if system yields robust scaling.
This procedure, called "numerical screening", is often used in systems biology model. The moral here is that two
equations that have the same functional forms and same variables can yield qualitatively distinct behaviours if we
assign different numbers to the same parameters. The set of equations that the authors numerically screened is

∂M

∂t
= DM

∂2M

∂x2
− (1 + E)p1α1M − (1 + E)p1α2M

2 (26a)

∂E

∂t
= DE

∂2E

∂x2
− αEE + βE

(M/Tp2
)hp2

1 + (M/Tp2
)h

(26b)
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We use the following boundary conditions

−DM
∂M

∂x

∣

∣

∣

∣

x=0

= η (Neumann condition: Constant flux of Morph at the proximal end) (27a)

DM
∂M

∂x

∣

∣

∣

∣

x=L

= 0 (Neumann condition (Reflective condition): No flux of Morph at the distal end) (27b)

DE
∂M

∂x

∣

∣

∣

∣

x=0

= 0 (Neumann condition (Reflective condition): No flux at the distal end) (27c)

DE
∂M

∂x

∣

∣

∣

∣

x=L

= 0 (Neumann condition (Reflective condition): No flux at the distal end) (27d)

(27e)

In Eqs. 26a and 26b, we assign different numbers to the following constants and check if a particular set of values
yield a robust scaling:

• DM : Diffusion coefficient for Morph.

• DE: Diffusion coefficient for Exp.

• α1: linear degradation term for Morph.

• α2: quadratic degradation term for Morph.

• αE : linear degradation term for Exp.

• η: Flux of Morph at the proximal end (x = 0).

• βE : maximum production rate of Exp.

• p1: This is either -1 (Exp increases degradation of Morph) or +1 (Exp decreases degradation of Morph).

• p2: This is either 0 (Morph represses Exp) or +1 (Morph induces Exp).

• Tp2
: T0 is repression threshold for Exp and T1 is induction threshold for Exp.

• h: Hill coefficient.

Procedure for numerical screening of Eqs. 26a and 26b: Ben-zvi and Barkai assigned approximately 400,000
different sets of numbers to the above parameters and, for each of these parameters, used MATLAB to numerically
solve Eqs. 26a and 26b. MATLAB has built-in PDE solvers. "Numerically solving" means using one of these solvers,
the authors obtained graphs of M and E versus x/L. They then checked this graph for (1) normal length (L=100µ
m) and (2) double length (L=200µ m). If there was a strong overlap between the two graphs (both functions of x/L),
then they concluded that the particular set of parameters yielded scaling. But having scaling is not sufficient if the
values of M and E are biologically non-sensical. To make biological sense, the authors tested if the solutions M and
E in steady-state obeyed all of the following conditions:

Conditions for M to be a biologically valid concentration-profile:

1. M must be maximum at x = 0 (where the source is) and minimum at x = L (distal end) with its maximum
being larger than 10 times its minimum.

2. Concentration at x = 0.5L or x = 0.75L must be larger than 10−6µ M.

3. The ratio between the maximum of M and the value of M at x = 0, 25L is larger than 1 and less than 100 (i.e.,
rule out extremely sharp concentration profiles).

4. M and E both reach their steady-state. To overcome numerical fluctuations in MATLAB’s solver, we first pick
two time points - t1/2 and 2t1/2 - where 2t1/2 is the total time that we impose on simulating Eqs. 26a and 26b.
We then measure the average values of M and E during the time interval [t1/2, 2t1/2] at any of the following
five positions: x = 0, x = 0.25L, x = 0.5L, x = 0.75L, and L. If M ’s and E’s averages deviate less than 1%
from their values at time 2t1/2 at the same position (i.e., one of the five values of x that we picked), then we
say that the system has reached a steady-state.
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Using the four criteria above, the authors found that only 7% of the 400,000 parameter sets were biologically valid.
The authors then scored each of the 7% of the parameter sets based on how well they scaled with L.

To quantify how well the two graphs overlapped, the authors assigned a score to each parameter set using the following
scoring metric:

Scoring metric:

1. For L=100 µm: Find the steady-state value of M at three positions: y1 = x1/L = 0.25, y2 = x2/L = 0.5, and
y3 = x3/L = 0.75. Let these three values be M1, M2, and M3.

2. For L=200 µm: Find positions y∗
1
= z1/L, y∗

2
= z2/L, and y∗

3
= z3/L where the steady-state value of M is M1,

M2, and M3.

3. Compute σ = 1

3

∑

3

i=1
|δi|, where δi = yi − y∗i

Note that σ = 0 would be a perfect scaling whereas no scaling at all would mean σ = 0.25. Furthermore, note
that if one of the three values - M1, M2, and M3 - was not reached when the embryo doubled in length, then scaling
clearly does not occur. The authors then selected parameter sets with σ < 0.1 and then concluded that these were
the ones that enabled robust scaling.
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