
Solving reaction-diffusion equation for embryos that scale with their length
(Dated: May 31, 2018)

Problem: Spatial patterning due to simple diffusion of a morphogen

Consider a morphogen Morph, whose concentration is M , diffusing and degrading along a line. This line represents
the proximal-distal axis of a developing embryo. The one-dimensional reaction-diffusion equation that describes the
concentration M along the line is

∂M

∂t
= D∇2M −G(M) (1)

where D is the diffusion coefficient of Morph, and G(M) is a degradation rate of Morph (so it is never negative) and
is a function of M .

(a) Assume that M does not degrade at all. The embryo’s proximal end is at x = 0 and its distal end is at x = ∞
(i.e., the embryo has one boundary, at x = 0). Note that as x approaches ∞, we have M → 0. Assume that at x = 0,
the concentration of M is always a constant, M0. Find the steady-state concentration profile M for this infinitely
long embryo.

(b) Now, assume that the embryo has a finite length, L, with the proximal end at x = 0 and the distal end at
x = L. The morphogen still does not degrade. Solve the reaction-diffusion equation (Eq. 1) to find the steady-state
concentration M(x). Use the following boundary conditions: M(x = 0) = M0 and M(x = L) = 0. The boundary
condition at x = L is called the absorbing boundary condition.

(c) Show that the solution you found in (b) proportionally scales with the proximal-distal length L of the embryo. That
is, show that if L changes by a factor β while the boundary conditions remain the same, then ML(x/L) = MβL(x/L)
where ML is the solution that you found in (b) and MβL would be the solution to Eq. 1 for the embryo with length
βL.

(d) Derive equations (24) and (25) in lecture note 5. You can use any result from the lecture note, in particular Eq.
(22), and your starting point is Eq. (11b) in lecture note 5.
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Solutions: Spatial patterning due to simple diffusion of a morphogen

(a) Here we have G = 0. For a steady-state profile M(x), we then have

0 =
d2M

dx2
(2)

Evidently, the steady-state concentration-profile does not depend on the diffusion coefficient D. As mentioned in the
lecture note, this equation with the prescribed boundary conditions has a unique solution. So once we guess a solution
and find that it’s indeed a solution of Eq. 2 that matches the boundary conditions, we have found the only solution
that there is. Since Eq. 2 states that M should not have its slope ever changing at any position x, a natural guess is
a linear function:

M(x) = Ax+B (3)

where A and B are constants. Note that Eq. 3 indeed satisfies Eq. 2. Now, we need M(0) = M0. Thus B = M0. And
to have M(L) = 0, we need A = −M0/L. Thus we have

M(x) = M0

(

1−
x

L

)

(4)

By an infinitely long embryo, we mean that L is finite but very large (we can never set x to be exactly an infinity
for an embryo). Above solution still holds even for a hypothetical, "infinitely" long embryo. Note that as we take
L → ∞, we have

M(x) = lim
L→∞

M0

(

1−
x

L

)

= M0 (5)

Thus, we obtain a constant concentration, M0 everywhere. Physically, this occurs because there must be a source of
the morphogen at x = 0 (or just to the left of x = 0, such as x = −ǫ) that is keeping the concentration at x = 0 fixed
at M0. So the morphogens at x = 0 diffuse out to the rest of the infinitely long embryo (x > 0)and are simultaneously
replenished by the source at x = 0.

(b) Eq. 4 is the solution.

(c) Let us call the solution Eq. 4 as ML(x). The solution for an embryo of length βL is

MβL(x) = M0

(

1−
x

βL

)

(6)

Let x = αL, where 0 ≤ α ≤ 1. Then

ML(αL) = M0(1− α) (7a)

= M0

(

1−
βα

β

)

(7b)

= M0

(

1−
βx

βL

)

(7c)

= MβL(βx) (7d)

= MβL(βαL) (7e)

= MβL(α(βL)) (7f)

= MβL(αLnew) (7g)

(7h)
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where Lnew = βL is the length of the embryo after it’s been scaled by the factor β. This shows that the morphogen
gradient scales with the length of the embryo. In other words, the absolute distance x does not matter, only the
fractional length α matters in determining the morphogen concentration.

(d) First-order degradation of the morphogen: The reaction-diffusion equation with a first-order degradation
term, G(M) = αMM , is given by Eq. 11b in lecture note 5:

τ
∂M

∂t
= λ2

∂2M

∂x2
−M (8)

where τ = 1/αM is called characteristic time and λ =
√

DM/αM is called the characteristic length (these are
also respectively called diffusion time and diffusion length). Note that λ is actually a function of the expander
concentration E. In steady-state, we have ∂M/∂t = 0 and λ = λs, where λs is the steady-state function (due to the
expander’s steady-state concentration profile, Es(x)). Thus we obtain

0 =
d2M

dy2
−M (9)

where y ≡ x/λs. The boundary conditions are

ηM = −DM
dMs

dx

∣

∣

∣

∣

x=0

=⇒
λsηM
DM

= −
dMs

dy

∣

∣

∣

∣

y=0

at x = 0: constant flux (by Fick’s law of diffusion) (10a)

Ms(x = L) = ǫ at x = L: constant concentration (10b)

where ηM and ǫ are constants. Eq. 10a indicates that we can write Ms(x) is a function of y, f(y) (i.e., Ms(x) = f(y)).
In other words, x does not appear by itself and always appears with λs as x/λs. Let us now solve Eq. 9. We have

0 =
d2f

dy2
− f (11)

Plugging f(y) = Ceay into Eq. 11, we find that a2 − 1 = 0. Thus, the general solution of Eq. 11 is

f(y) = Aey +Be−y (12)

where A and B are constants that depend on the boundary conditions (Eqs. 10a- 10b). First of all, we must have
A = 0 since the solution should still hold for a very long embryo (i.e., L → ∞). If A 6= 0, then the ey term will diverge
to infinity as y → ∞ while the e−y goes to zero (and thus B does not have to be zero). So, we have reduced Eq. 12 to

f(y) = Be−y (13)

Applying the two boundary conditions to Eq. 13, we have

λsηM
DM

= B (14a)

ǫ = Be−L/λs (14b)

We assume here that the expander concentration is uniform throughout the embryo, and hence λs = λs([E]) is a
constant (i.e., both DM (E) and αM (E) are constants).
By Eq. 14a, we have

Ms(x) =
λsηM
DM

e−x/λs (15)
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Eq. 14b states that ǫ must be a particular value for the steady-state with these two boundary conditions. To determine
this value, we note that the expander concentration, [E], must also be at a steady-state for otherwise, λs would change
over time, meaning that Ms would not be a steady-state solution. In lecture note 5, we discussed that increasing the
expander concentration would increase the morphogen’s diffusion (i.e., increases DM ) and decrease the morphogen’s

degradation (i.e., decreases αM ). Thus, increasing the expander concentration would increase λs =
√

DM/αM . We
also stated in lecture note 5 that the expander has a very fast diffusion, leading to the equalization of its concentration
throughout the embryo (thus the assumption above that the steady-state concentration fo the expander is uniform).
This means that if the expander production is not turned off at any point inside the embryo, then the expander
produced at a given point will quickly spread and even out, leading to a higher uniform concentration of itself. This,
in turn, would increase λs, causing the Ms to change, which we cannot have since the Ms must be a steady-state
solution. Thus we the expander production rate, but not necessarily its concentration inside the embryo, must be zero
everywhere inside the embryo, including at x = L where the morphogen concentration is the lowest and hence the
expander-production rate is the highest - recall that this is because the morphogen represses the expander production
(see lecture note 5). Thus we see that if we ensure that the expander-production rate at x = L is zero, then we
are also ensuring that its production rate, which is lower at all other locations, is zero as well. Recall that the
expander-production rate is given by the sigmoidal function:

∂E(x)

∂t
=

V

T h
rep

+M(x)
(16)

where V and Trep are constants and M is the morphogen concentration. Assuming a very high (infinite) Hill coefficient
h, the production of the expander would be nearly (exactly) zero if M is larger than or equal to Trep. Thus we can
argue that in order to have zero production of the expander at x = L, we need ǫ ≥ Trep. Setting ǫ = Trep, we have

Trep = Ms(x = L) (17a)

=⇒ Trep =
λsηM
DM

e−L/λs (17b)

=⇒
L

λs
= ln

(

λsηM
DMTrep

)

(17c)

=⇒
1

λs
=

1

L
ln

(

λsηM
DMTrep

)

(17d)

=⇒
1

λs
=

µ

L
(17e)

where

µ ≡ ln

(

λsηM
DMTrep

)

(18)

Thus Eq. 15 becomes

Ms(x) =
LηM
DMµ

e−µx/L (19)

This is the result that the problem asked for. Note that the first-order degradation does not yield a perfect scaling -
Eq. 19 has the L appearing outside the exponential without a x to go with it.

Second-order degradation of the morphogen: We now assume that the morphogen degrades as

G(M) = αM
M2

MT
(20)
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where MT is a constant and αM is a function of the expander concentration (i.e., αM = αM ([E])). The reaction-
diffusion equation is now

∂M

∂t
= DM∇2M −G(M) (21a)

=⇒
∂M

∂t
= DM

∂2M

∂x2
− αM

M2

MT
(21b)

=⇒ τ
∂M

∂t
= λ2

∂2M

∂x2
−

M2

MT
(21c)

=⇒ 0 =
d2Ms

dy2
−

M2

s

MT
(for a steady-state concentration-profile) (21d)

where λ ≡
√

DM/αM , τ = 1/αM , y ≡ x/αM , and Ms is the steady-state concentration of the morphogen. Note that
y is still a dimensionless position variable since αM , like in the first-order degradation scenario, is a unit of length.
Eq. 21d indicates that we can write Ms is a function of y (i.e., Ms = f(y)). Unlike in the case of first-order degradation,
we cannot just assume that f(y) = Ceay then plug it into Eq. 21d and then proceed. This is because Eq. 21d is not
a linear equation (unlike its counterpart in the case of first-order degradation) (i.e., exponential solutions work for
linear equations but not necessarily for non-linear equations like Eq. 21d). In fact, you can check that the exponential
does not work by plugging in f(y) = Ceay into Eq. 21d (you’ll find that a2 must equal an exponential that varies
over space - a non-sense). To proceed, we manipulate Eq. 21d so that we collect alike variables together and separate
them from the other variables:

0 =
d2f

dy2
−

f2

MT
(22a)

=⇒ 0 =
du

dy
−

f2

MT
(where u ≡ df/dy) (22b)

=⇒ 0 =
du

df

df

dy
−

f2

MT
(22c)

=⇒ 0 = u
du

df
−

f2

MT
(22d)

=⇒
f2

MT
df = udu (22e)

We then integrate Eq. 22e to find a general, steady-state solution f(y) to the reaction-diffusion equation
with a second-order degradation (Eq. 21d):

∫

f2

MT
df =

∫

udu (23a)

=⇒
2f3

3MT
+A = u2 (where A is a constant) (23b)

=⇒ −

√

2f3

3MT
+A =

df

dy
(take the negative root since f should decrease) (23c)

These are complicated functions. Let’s see if we can simplify them by using the two boundary conditions, Eqs. 10a- 10b.
Applying the boundary condition at y = L/λs (Eq. 10b) to Eq. 23c, we obtain

df

dy

∣

∣

∣

∣

y=L/λs

= −

√

2ǫ3

3MT
+A (24)

where f(L/λs) = ǫ = Trep (by the argument given in the previous section on first-order degradation scenario). Let us
assume that Trep is very small. In fact, let us assume that Trep ≈ 0. Let us also assume that the embryo is sufficiently
long that the morphogen has an extremely shallow gradient at x = L. That is,
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df

dy

∣

∣

∣

∣

y=L/λs

≈ 0 (25)

Eq. 24 then becomes

A = 0 (26)

Before moving on, note that our two assumptions here - (1) Trep is a very small concentration (i.e., nearly but not
exactly zero), and (2) L is sufficiently large that the morphogen gradient is very shallow (i.e., df/dy|y=L/λs

≈ 0) - are
consistent with each other. We would indeed expect that a very long embryo to have an extremely low morphogen
concentration and shallow morphogen gradient at the distal end (x = L). With A = 0, Eq. 23c is now simple to solve
by integrating as follows:

∫

dy = −

∫

df

√

3MT

2f3
(27a)

=⇒ y +B =
√

6MTf
−1/2 (where B is a constant) (27b)

=⇒ f(y) =
6MT

(y +B)2
(27c)

=⇒ Ms(x) =
6MT

(x/λs +B)2
(since y = x/λs) (27d)

=
6MTλ

2

s

(x+ λsB)2
(27e)

Applying the boundary condition at y = 0 (Eq. 10a) to Eq. 27c, we obtain

λsηM
DM

=
12MT

B3
(28a)

=⇒ B =

(

12MTDM

λsηM

)1/3

(28b)

Finally, combining Eq. 27e with Eq. 28b yields

Ms(x) =
6MTDM

αM

(

x+

(

12MT D2

M

αMηM

)1/3)2
(29a)

=
6MTDM

αM (x+ C)2
(where C ≡

(

12MTD
2

M

αMηM

)1/3

) (29b)

Technically, we are done at this point. But it is unclear from Eq. 29b whether scaling occurs or not (and in fact,
merely glancing at it suggests that no scaling occurs). This is because the equation does not contain any factors of
L. Let rewrite Eq. 29b by explicitly showing all factors of L. To do this, recall that we had assumed that L is very
large in Eq. 25. Specifically, we assume a large embryo so that Eq. 25 is satisfied and L ≫ C. Then Eq. 29b, after
applying the boundary condition Ms(L) = Trep, becomes

Ms(L) ≈
6MTDM

αML2
(30a)

=⇒ Trep ≈
6MTDM

αML2
(30b)

=⇒ L2 =
6MTDM

αMTrep
(30c)
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Then we use Eq. 30c to introduce a factor of L2 in Eq. 29b:

Ms(x) ≈
L26MTDM

L2αMx2
(31a)

=
6MTDM

αML2

1

(x/L)2
(31b)

=
Trep

(x/L)2
(by Eq. 30c) (31c)

Eq. 31c shows that the 2nd order degradation of the morphogen achieves a nearly perfect scaling (under the assumption
that L is sufficiently large - "sufficiently large" means satisfying Eq. 25 and L ≫ C).
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