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I. MAIN IDEA OF THE TURING MECHANISM

The Turing mechanism for spatial-pattern formation describes a uniformly spread-out molecules suddenly self-
organizing into spatial-patterns (usually periodic stripes and dots). Specifically, the Turing mechanism states a
seemingly uniform sea of molecules can have a small ripple at some location (i.e, slightly higher concentrations of
the molecules at some location) and that this ripple could grow over space, causing the entire sea of molecules to
reorganize their concentration profiles to form highly ordered patterns, including waves, stripes, and dots. Thus a
uniform field of molecules is unstable. Turing had three surprising insights that enabled the Turing mechanism to have
a lasting impact. First, Turing showed that at least two chemicals are necessary for pattern-formations to occur from
an initially uniform state. Secondly - and the one that is perhaps the most surprising - is that diffusion can actually be
destabilizing factor that causes the system to be unstable. This latter point is counter-intuitive since diffusion has the
role of homogenizing a field of chemicals, by smoothing out spatial variations in the chemical concentrations, which is
the opposite of pattern formations. Finally, Turing’s third major insight was that the diffusion-caused instability can
induce growth of a structure (i.e., local inhomogeneity in chemical concentration) to grow at a particular wavelength,
which would ensure patterns such as stripes with regular spacings.

II. THE TURING MECHANISM

As we will see, these patterns arise when the diffusion constants of at least two chemicals substantially differ. To
generate such instability, the diffusion constants of the molecules and the interactions between them must satisfy
a single condition. To derive this condition, we start with the reaction-diffusion equation that is always used for
describing Turing mechanism. We will, as usual, use a reaction-diffusion equation with two types of molecules:

∂u

∂t
= D1∇

2u+R1(u, v) (1a)

∂v

∂t
= D2∇

2v +R2(u, v) (1b)

where u and v are concentrations of molecules, A and I, D1 and D2 are diffusion coefficients of A and I, and R1 and
R2 are reaction rates for A and I (i.e., net creation rates for A and I). The form of the reaction-rate functions, Ri,
depends on the specific chemical system under consideration. Some of the functional forms for Ri are given special
names such as the Gierer-Meinhardt model, Schnakenberg model, and Thomas model.

To obtain the Turing mechanism, we assume that when the concentration is uniform - that is, u(x, y) = U and
v(x, y) = V , where U and V are the steady-state constant profiles) - then R1 = 0 and R2 = 0. That is,

0 = R1(U, V ) (2a)

0 = R2(U, V ) (2b)

But now suppose that there are small spatial inhomogeneities, δu and δv - that is, u(x, y) = U + δu(x, y) and
v(x, y) = V + δv(x, y). Then we can Taylor expand R1 and R2 near their values about the uniform concentrations U
and V:

R1(u, v) = r11δu+ r12δv (3a)

R2(u, v) = r21δu+ r22δv, (3b)
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where rij ’s are the following Jacobian elements of Ri:

ri1 ≡
∂Ri

∂u

∣

∣

∣

∣

U

(4a)

ri2 ≡
∂Ri

∂v

∣

∣

∣

∣

V

(4b)

By defining matrices,

~D ≡

[

D1 0
0 D2

]

, ~r ≡

[

r11 r12
r21 r22

]

, (5)

and

~c ≡

[

u
v

]

(6)

we can rewrite the reaction-diffusion equations in terms of matrix multiplications as

∂~c

∂t
= ~D∇

2~c+ ~r~c (7)

To solve Eq. 7, we must first impose boundary conditions (and also state where our boundaries are). Typically, studies
of the Turing mechanism impose either a periodic boundary condition (thus still keeping the system finite) or assume
an infinite space without boundaries. In either case, we can consider solutions that are spatially periodic, since a
periodic boundary condition and an infinite space both mean that there is a translational symmetry in the solution
to Eq. 7. We will confine ourselves one-dimension as a three-dimensional system with periodic or infinite boundaries
proceed in the same way. We consider spatial perturbations of the form eiqx and temporal perturbations of the
form ekqt, where kq is a complex number and q is a real number. Since we can represent more general, non-periodic
perturbations in space as a sum of these periodic perturbations (i.e., Taylor series) - this is because Eq. 7 is linear -
it is sufficient to analyze the periodic perturbations. Specifically, we seek solutions of the form:

~c ≡

[

uo

vo

]

eiqxekqt, (8)

where uo and vo are constant amplitudes of perturbation.
The real component of kq (i.e., Re(kq)) is the rate of growth or shrinkage of the spatial perturbation. Specifically,

if Re(kq) < 0, then the initial perturbation decays over time - such system is called "linearly stable" because Eq. 3b
used a linear approximation - whereas Re(k(q)) > 0 leads to the initial perturbation growing over time, at least for
a time when the linear approximation (Eq. 3b) is valid. Thus the problem of finding if uniform concentrations of
A and I are unstable reduces to determining the sign of kq for each q. Plugging the perturbation (Eq. 8) into the
reaction-diffusion equation (Eq. 7), we obtain

kq~c = (~r − ~Dq2)~c (9)

Then by defining ~Pq = ~r − ~Dq2, we obtain the following eigenvalue-eigenvector equation:

kq~c = ~Pq~c, (10)

where kq is an eigenvalue and ~c is an eigenvector. Thus solving the reaction-diffusion equation with a small perturbation
has reduced to finding the eigenvalue and an eigenvector for each q. For c to be non-zero, Eq. 10 tells us that

0 = det(~Pq − kq~I) (11a)

= k2q − tr(~Pq)kq + det(~Pq) (11b)
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where ~I is the 2 x 2 identity matrix. Solving this quadratic equation, we obtain the eigenvalue, kq

kq =
1

2
tr(~Pq)±

1

2

√

(tr(~Pq))2 − 4det(~Pq) (12)

Eq. 12 is perhaps the most important equation related to the Turing mechanism because it tells us everything that
we need to know about when a uniform concentration field becomes unstable and what the spatial length (defined by
q) associated with the instability is. We can diagrammatically summarize our finding (Fig. 1):

tr(P  )q

det(P  )q

0

Re(k     )q1 < 0

Re(k     )q2 < 0

Im(k     )q1 = 0

Im(k     )q2 = 0

            stable 

(oscillatory decay)

                  unstable

        (oscillatory growth)

Re(k     )q1 > 0

Re(k     )q2 > 0

Im(k     )q1 = 0

Im(k     )q2 = 0          stable

(no oscillations)

   both modes 

      unstable

(no oscillations)

         one mode is unstable

               (no oscillations)

Re(k     )q1 > 0

Re(k     )q2 < 0

Figure 1. Graphical summary of conditions for generating Turing instability (graphical representation of Eq. 12). The parabola

represents tr(~Pq))
2 = 4det(~Pq).

Thus, for a uniformly mixed A and I (i.e., u = U, v = V ) to be stable, we need both of the following conditions to
be satisfied:

tr(~Pq) = r11 + r22 − (D1 +D2)q
2 < 0 (Stability condition 1) (13a)

det(~Pq) = (r11 −D1q
2)(r22 −D2q

2)− r12r21 > 0 (Stability condition 2) (13b)

If one of the two conditions (Eqs. 13a and 13b) is violated for a non-zero wave number (i.e., q > 0), then we say
that the chemical system exhibits a Turing instability (aka. Turing bifurcation). If the system consists of N
chemicals, then our Pq would be a N x N matrix and our problem would be to solve for N eigenvalues (if any one of
them is negative, then again, the system would exhibit Turing instability). Turing’s insight was that he focused on a
two-chemical system, which simplified analysis while exhibiting non-trivial behaviours.

Turing’s main physical insight was that diffusion could drive the instability. To see this, suppose we start with a
uniform mixture of A and I by, for example, constantly stirring the beaker that contains both chemicals. Given that
the stirring is vigorous enough, the diffusion constants, D1 and D2, are set to zero. Then Eqs. 13a and 13b become

tr(~Pq) = r11 + r22 < 0 (14a)

det(~Pq) = r11r22 − r12r21 > 0 (14b)

Eq. 14a and the fact that the diffusion constants and q2 are non-negative mean that when we turn on the diffusion
constants, we have

tr(~Pq) = r11 + r22 − (D1 +D2)q
2 (15a)

< r11 + r22 (15b)

< 0 (15c)
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Thus, Eq. 13a is automatically satisfied, after we turn on the diffusion constants (i.e., after we stop stirring), if a
well-mixed condition is stable in the absence of diffusion. Hence, the only way that the uniformly mixed chemicals
become unstable is if Eq. 13b is violated (i.e., if the system resides in the lower left quadrant in Fig. 1). Note that

the determinant of ~Pq is quadratic in q2 with a positive factor in front of it (Eq. 13b). This means that the graph of

det(~Pq), as a function of q2, is a parabola with its opening facing upwards (in positive direction). Thus we only need
to know if the minimum of this parabola is below zero. If not, then there is no Turing instability. If there is and this
minimum value occurs at a non-zero q, then there is Turing instability. The miminum value occurs at q = qo, where

0 =
d(det(~Pq))

d(q2)

∣

∣

∣

∣

(qo)2
, (16)

Solving above equation, we find

(qo)
2 =

D1r22 +D2r11
2D1D2

(17)

and that the minimum value of the determinant is

det(~Pqm) = r11r22 − r12r21 −
(D1r22 +D2r11)

2

4D1D2
(18)

From Eq. 18, we see that the stability condition 2 (Eq. 13b) is violated (i.e., there exists a value of q for which det(~Pq)
< 0) when,

D1r22 +D2r11 > 2
√

D1D2(r11r22 − r12r21) (Condition for linear instability of uniform mixture) (19)

Eq. 19 is the sole condition that is necessary and sufficient for Turing instability - this is the condition that
must be satisfied for uniformly mixed chemicals, A and I, become unstable due to diffusion.

Let us now analyze some consequences of Eq. 19. First, we note that Eq. 14b and Eq. 19 together imply

D1r22 +D2r11 > 0 (20a)

=⇒
D1

D2
>

−r11
r22

(20b)

Since the diffusion coefficients are always positive, r11 and r22 must have opposite signs. Without loss of generality,
let us say that r11 > 0 and r22 < 0. Then A, with diffusion coefficient D1, is called an activator and I, with diffusion
coefficient D2, is called an inhibitor. They are called as such because A promotes its own instability while I inhibits
its own growth.

A second consequence of Eq. 19 is that the activator must have a lower diffusion coefficient than the
inhibitor for the Turing instability. To see this, we must rewrite the stability condition (Eq. 19) in terms of the
diffusion lengths of A and I, which are L1 and L2 respectively:

L1 ≡

√

D1

r11
L2 ≡

√

−D2

r22
(21)

In terms of L1 and L2, the instability condition (Eq. 19) becomes

1

2

(

1

L2
1

−
1

L2
2

)

>

√

r11r22 − r12r21
D1D2

> 0 (equivalent to the Turing-instability condition (Eq. 19)) (22)

Thus it follows that for a uniform mixture of chemicals to be unstable to diffusion, a necessary but not sufficient
condition is that the activator must diffuse slower than the inhibitor (i.e. L1 > L2). This alone is insufficient for
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having instability because the right side of the inequality in Eq. 22 must still be satisfied - this is not guaranteed
by having the activator diffuse slower than the inhibitor. The condition that L1 > L2 is why we often say "local
activation and long-range inhibition" for Turing instability. Finding real chemical systems that satisfy Eq. 22
has been difficult. For one, Eq. 20b sets an upper bound on how much larger the inhibitor’s diffusion constant must
be. In real systems, the ratio −r22/r11 can be as large an 10 (thus so must the corresponding diffusion coefficients).
This is a large number.


	AP3162: Lecture - Turing mechanism for spatial patterning
	Abstract
	Main idea of the Turing mechanism
	The Turing mechanism


