
NB1140: Physics 1A - Classical mechanics and Thermodynamics
Problem set 1 - Describing motion of objects (Kinematics)

Week 1: 14- 18 November 2016

Problem 1. Squished between two trains (Zeno’s paradox)
In this problem, you will show that you can take an infinite number of steps and yet walk
only a finite distance.
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Figure 1: Two trains squishing a fly

Two trains are heading towards each other
(Figure 1). Both trains are moving at a
constant speed V , with one train moving
to the right and the other moving to the
left. Initially (at t = 0), the two trains are
separated by a distance D. A fly is trapped
between the two trains. The fly flies at a
constant speed u, first going from the left
to the right train, and then flying back to
the left train, and then back to the right
train, and so forth. The fly does this until it gets smashed by the two colliding trains.
Here we assume that the fly is a point object (i.e. it takes up zero volume). We also
assume that when the fly reaches one of the trains, it immediately turns around (i.e. it
takes zero time to turn around and start flying back in the other direction at speed u).
Also assume that u > V (yes, here we have a superfly that moves faster than the trains).

(a) Let d(t) be the distance between the two trains’ heads at time t. Determine d(t) as
a function of D, and V .

(b) At what time tf do the two trains collide with each other? Express your answer in
terms of D, and V .

(c) What distance does each train travel before they collide? (i.e. distance travelled
between t = 0 and t = tf)?

Note that above answers don’t depend on u because how the trains move is independent
of what the fly is doing.

(d) In (c), you calculated the answer. Now, without any math, explain in words why the
answer must be what you calculated in (c). In other words, why can’t the answer be that
the trains meet at a location closer to one side than the other? [Hint: What happens if
you look at Figure 1 after ”flipping” the page (or look at it in the mirror)? Does Figure
1 look the same to you or not? ]. This explains why your ansewr in (c) does not depend
on V .
The answer you got in (c) might seem obvious. If so, it’s because the notion of symmetry
is ingrained in your mind from your (unconcious) everyday experience. In many situations
in physics, the notion of symmetry like this one can help you get the answer without doing
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lots of calculations. In this particular problem, you didn’t have to do much calculations
but later in the course, you’ll see examples where you can avoid doing a whole page of
calculations by invoking the concept of symmetry. You don’t always have to calculate
your answer in physics (and on exams). Invoking physical argument to get the answer in
just 1-2 lines is just as valid (and can give you full points, if your reasoning is justified
properly).

(e) What is the total distance travelled by the fly before it is squished? Does this answer
depend on its initial position between the trains at t = 0? (i.e. Does your answer depend
on whether the fly started from the left train or the right train or 1/4 of the way between
the two trains, etc? Why or why not?)

Let’s calculate the same answer as in (e) but with a different method. Assume that
initially (at t = 0), the fly starts at the head of the left train. It starts flying at speed
u. Both trains are still moving at the constant speed V towards each other. We again
assume that u > V and that the fly takes zero time to turn around and fly back in the
other direction (so it’s speed is always u).

(f) What is the time interval ∆t1 taken by the fly to go from the left train to the front
of the right train? Also, what is the distance d1 that the fly flies during this time ∆t1?
Express your answer in terms of D, V , and u.

(g) Now, after arriving at the front of the right train, the fly flies back to the front of the
left train. We want to calculate the time interval ∆t2 taken and the distance d2 covered
by the fly during this second trip (going from right train to left train). Let’s do this step
by step:

• First, let D2 by the distance between the left train and the fly after time interval
∆t1. By drawing a picture, show that D2 = (u− V )∆t1 (Remember, u > V so the
left train is moving too slow to catch up with the fly during the first one-way trip
in part (f)). One way to see this result is using ”relative motion”. As a passenger
on the left train, the fly’s speed relative to you (and thus the left train) is u − V .
And relative to you, the left train is not (and you are not) moving. So the fly is
getting aways from you and the left train during the first one-way trip at a speed
u−V for time interval ∆t1. Thus the distance between the left train (you) and the
fly must be (u− V )∆t1 at the end of the first one-way trip.

• Now, relateD2 with ∆t2 by writingD2 on one side of an equation and ∆t2 multiplied
by some factor on the other side of the equation (like you related D with ∆t1 in
part (f). In part (f), we can consider D1 = D).

• Using above two equations, D2 = (u− V )∆t1 and the other you found by relating
D2 with ∆t2, calculate ∆t2 in terms of ∆t1. [Answer : ∆t2 =

u−V
u+V

∆t1]

• Finally, calculate d2. [Answer : d2 = uu−V
u+V

D
u+V

]
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(h) Let’s generalize the results of (f) and (g). We want to calculate the time interval
∆tn taken and the distance dn flown by the fly during the n-th one way trip. We will do
this step-by-step like in part (g). Actually, what we will do is derivation by induction
(which is like the proof by induction that you learned in your math courses).

• Let n be some large integer. Let Dn be the distance between the ”inbound train”
(the train that’s moving towards the fly) and the fly at the beginning of this n-th
one-way flight. This one way flight happens during time interval ∆tn. At the end
of this one-way flight, the inbound train and the fly meet. By drawing a picture,
show that Dn = (u− V )∆tn−1. You can also use the concept of relative motion to
derive this result as in part (g).

• Now, relate Dn with ∆tn by writing Dn on one side of an equation and ∆tn multi-
plied by some factor on the other side of the equation.

• Using above two equations, calculate ∆tn in terms of ∆tn−1. [Answer : ∆tn =
u−V
u+V

∆tn−1]

• Calculate dn in terms of tn−1. [Answer : dn = uu−V
u+V

tn−1]

• Let’s now use induction to write dn in terms of just u, V , and D. Since we have

tn =
u− V

u+ V
tn−1

dn = u
u− V

u+ V
tn−1 (1a)

show that

dn = u
{u− V

u+ V

}n−1 D

u+ V
(2)

Note that above equation is true even for all values of n, not just for large n. For
example, for n = 1 and n = 2, you see that you get the d1 and d2 that you got in
parts (f) and (g).

(i) Now, compute the total distance flown by the fly by computing the following infinite
sum

dtotal =

∞
∑

n=1

dn (3)

Here, you can use the formula for doing an infinite geometric sum that you learned in
your analysis course or derive it yourself. Why do you compute a sum of infinite number
of dn’s instead of a finite number of them? Note that you should get the same answer as
in part (e).

Here you have just shown that you can take an infinite number of steps (flights), and yet
cover a finite distance in a finite amount of time. This is called a Zeno’s paradox.
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(j) Now for the ultimate challenge: Would this whole situation work for a real fly?
[Answer: No! Zeno’s paradox does not apply to a real fly]. Why not? [Hint: A real fly is
not a point object because it has a non-zero volume. Now think of how a non-zero volume
affects the answer you calculated above. Just to be concrete, say the fly is a sphere with
a diameter h. For what value of n does dn start to become smaller than h?]
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*Problem 2: Why bugs spiral into light (logarithmic spiral)
Parts (e) and (f) of this problem will appear on Quiz 1
One way to kill an annoying bug that flies is by putting a hot lamp that emits a bright
light. The bug flies into the lamp. Once the insect lands on the lamp, it is cooked to
death by the immense heat. But you will often see that the fly does not fly straight into
the lamp. Often, it spirals into the lamp. Why does this happen? In this problem, we
calculate the exact trajectory of the bug.
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light

θ
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φ(0)=0
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Figure 2: A bug spirals into a lamp.
Bottom figure is from Wikipedia.

When there is a bright light (like a full moon in
a clear sky at night), many birds and insects like
to keep a specific angle between their eyes and the
light source. This helps them navigate the Earth.
The reason that birds and bugs don’t spiral into the
moon is that the moon is too far away. That’s not
the case if we put a bright lamp in the same room
as the bug! So we’re really hijacking a naturally
evolved navigational mechanism to kill the bugs.
Let’s calculate how this actually happens.

Suppose we have a bug (see the picture on the
right). Initially, it is at a distance R from the lamp.
The bug always flies at a constant speed V but not
at a constant velocity. This is because the bug al-
ways maintains an angle θ between its direction of
flight and the lamp. This means that the velocity
vector ~V is always at a constant angle θ with respect
to the radial line that joins the bug and the lamp.
(Note: |~V | = V ). We can always decompose the

velocity vector ~V into two component vectors that
are perpendicular to each other: ~V|| and ~V⊥ (see pic-
ture). We can do this at all times, during the bug’s

entire flight. ~V|| is always parallel and aligned with
the radial line that joins the lamp and the bug. The
~V⊥ is always perpendicular to this radial line.

Let’s do a simpler example first. Suppose θ = π
2

(in radians. Remember that in physics, we measure
angles in radians).

(a) What are the lengths of the vectors ~V⊥ and ~V|| in terms of V ?

(b) Describe the bug’s motion in words. Will it ever hit the lamp?

Let’s now assume that θ = 0.

(c) What are the lengths of the vectors ~V⊥ and ~V|| in terms of V ?
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(d) Describe the bug’s motion in words and then mathematically derive its motion by
calculating r(t) (with r(0) = R). When does the bug land on the lamp? [Answer: R/V ].

Now, let’s analyze how the bug spirals into the lamp. Suppose 0 < θ < π
2
.

(e) What are the lengths of the vectors ~V⊥ and ~V|| in terms of V and θ?

(f) Calculate r(t) in terms of V , θ, and R. When does the bug arrive at the lamp?
Answer: r(t) = R− V tcos(θ).

(g) Calculate φ(t) in radians (see bottom of Figure 2). We will study angular motion in
detail later in this course. But for now, you can use the fact that at given instant of time
t, the instantaneous angular velocity dφ/dt is given by

r(t)
dφ

dt
= V⊥ (4)

By solving above differential equation, show that

φ(t) = A · log(B(t)) (5)

Here log is the natural logarithm (base e). Here you have to show what A and B(t) are
in terms of θ, t, V , and R.
[Hint: Remember from your analysis courses that

∫

1
(1+x)

dx = log(1 + x) + constant]

The resulting trajectory of the bug is defined by both r(t) and θ(t). This path is the
blue spiral shown at the bottom of figure 2. This path is called the logarithmic spiral
because of the log(B(t)) in φ(t). We can see this shape in many different objects in
nature: logarithmic spirals of galaxy, cyclones, broccoli, and sea shells, just to name a
few.
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Problem 3: Travelling faster than light
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Figure 3: Shadow of a fly on a wall.

You probably heard that nothing can
travel faster than light (except for light it-
self of course). Indeed, any object with a
mass cannot travel faster than light. This
is a consequence of Einstein’s theory of rel-
ativity. Even any massless particle such a
photon (particle of light) cannot travel any
faster than the speed of light. Well, that’s
actually not quite true. In this problem,
we show that there’s a caveat: Some things
can travel faster than light! But no sig-
nal (information or energy) can travel from
point A to point B faster than light. This
is important because it means that you
cannot have an effect before a cause (e.g.,
getting shot by a bullet before the gun is
fired, or being born before your mother was
born, etc.).
Consider the set up in the picture to the
right. A fly is in front of a projector that emits light. The fly is flying upwards at a
constant speed u. It is blocking the light from the projector. So the fly casts a shadow
on the wall behind. The shadow moves up the wall at a speed v due to the fly moving
up. The fly is at a distance d from the projector and is at a distance L from the wall.
We assume that d << L (i.e. d is much smaller than L). To model this situation in a
very simple way, let’s consider the right-angled triangle in the bottom of the figure. This
triangle consists of two right angled triangles: the yellow triangle and the bigger triangle
(which includes the yellow one). Both triangles share the same pointy wedge. This wedge
has an angle θ. When the fly moves up at the speed u, we can consider one side of the
yellow triangle to increase in its length at speed u. Similarly, we can consider one side of
the bigger triangle to increase in its length at speed v.

(a) Calculate d(tanθ)/dt in terms of d and u.
[Hint: Calculate the rate (length / time) at which the yellow triangle’s side length changes
over time].

(b) Using your result from (a), perform step-by-step calculations to prove that

v = (d+ L)
u

d
(6)

(c) Let c be the speed of light. By rearranging the terms in above equation, show that
for the shadow to travel at a speed faster than the speed of light (v > c), we need

L

d
>

c

u
− 1 (7)
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(d) Looking at above equation, note that by making the fly as close to the project as
possible, we can make d as close to zero as we want. In this way, we can satisfy the
inequality (i.e. make the left hand side L

d
larger than the right hand side c

u
- 1). Thus

we can indeed arrange the fly to be sufficiently close to the projector so that the fly’s
shadow on the wall travels faster than light. To get a feel for how far the fly should
be to the projector and how far the wall should be, let’s put in some numbers. In fact,
instead of a fly, suppose we have a mini Boeing 747. A Boeing 747 can travel at a speed
of approximately 1000 km/h relative to the ground (called the ground speed). Speed of
light is 3x108 m/s. Suppose the mini 747 is 1 mm away from the projector. How far
should the wall be from the 747 so that the airplane’s shadow travels at the speed of
light? [Answer: You should get a number that is close to about 100 m].

Problem 4. Bacterial chemotaxis: Random walk
In lecture note 1, you learned how bacteria like E. coli swim towards food. Let’s analyze
a highly simplified model of this behaviour. Let’s assume that an E. coli moves along a
line. So it can only move to the left or right along this line.

(a) Suppose the E. coli’s receptors for detecting the chemoattractants is defective. This
can happen if there is a mutation in the DNA sequences that code for the genes that
make up the receptor. In this case, even when there is food, the E. coli cannot smell it
(because it has no or defective receptors on its cell membrane). As a result, the E. coli
cell swims to the right at a constant speed V for a fixed time interval T , and then it
immediately turns around, and then swims to the left at a constant speed V for a fixed
time interval T . And then it repeats this motion over and over (first to the right, and
then to the left again). Sketch the graphs of the position and velocity of the E.coli as a
function of time t. Watching over a long time, what is the average displacement of the
E. coli relative to its initial position as a function of time?

(b) Suppose the E. coli now has working receptors. The cell makes not just one but
many copies of this receptor and displays them on its outer cell membrane. Some of the
receptors will have the chemoattractant (attractive food molecules) bound to them. How
many receptors are bound to the food molecules depends on how many food molecules
there are (In your chemistry course, you will probably learn how to calculate this quantity
by assuming a chemical equilibrium: the answer depends on the concentration of the
food molecules, the concentration of receptors on the cell surface, and an ”equilibrium
constant”). When the receptors are bound to food molecules, they trigger intracellular
signalling events that cause the cell to spend more time swimming in the direction of the
food than in the other direction. This allows the cell to swim up the concentration gra-
dient (it goes from lower to higher concentration of the food molecules). Let’s model this
situation. The food (sugar) is at the right side of the E. coli’s initial position. Smelling
food, it swims to the right at a constant speed V for a fixed time interval TR, and then
it swims to the left at a constant speed V for a fixed time interval TL. Importantly, the
intracellular signalling events ensure that TR > TL.
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Sketch the graphs of the position and velocity of the E. coli as a function of time t.
Watching over a long time, what is the average displacement of the E. coli relative to its
initial position as a function of time?
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