
NB1140: Physics 1A - Classical mechanics and Thermodynamics
Problem set 2 - Forces and energy

Week 2: 21- 25 November 2016

Problem 1. Why force is transmitted uniformly through a massless string, a
massless spring, and any massless objects
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Figure 1: (A) Massless string of length L.
Black segment is a tiny segment of the string
that is pulled to the right with a force of mag-
nitude T and to the left with a force of mag-
nitude TL. (B) Block of mass m is attached
to a massless string. A person pulls the right
end of the string with a force ~F . (C) Up-
per panel: Two massless Hookian springs
with spring constants k1 and k2 are joined
together. The junction (”glued point”) is
massless like the springs. Bottom panel:
Joining two springs gives us a single new
Hookian spring with a spring constant knew.

(a) Consider an object of mass m. Write
down the Newton’s 2nd law. Then by say-
ing that m = 0 (i.e. the block is massless),
show that the total force (also called ”net
force”) on the object must be zero.

(b) Suppose that there is a non-zero net
force on the massless object. By writing
~Ftot/m, show that the acceleration of the
object must be infinite. This is clearly im-
possible. No object can have an infinite
acceleration (or infinite speed). So indeed
the total force acting on any massless ob-
ject must be zero.

(c) Consider a massless string. Let’s an-
alyze a short segment of the string (black
segment in Fig. 1A). This short segment
has zero mass (since the entire string is
massless). It is pulled to the right by the
part of the string to its right. It is also
pulled to the left by the part of the string
to its left. Draw a force diagram that rep-
resents all the forces acting on this piece.
How is the pulling force from the right side
(T ) related to the pulling force from the
left side (TL)? [Answer: TL = T ].

(d) Note that your result in (c) holds for
all short (or long) segments of the string.
Each segment of the string is pulled equally
to the right as it is to the left. This is
why we call it a ”tension”: Each segment
of the string is stretched due to two op-
posing forces (of magnitude T ) pulling in
opposite directions. Now consider a block
attached to one end of the string and your
hand pulling the other end of the string
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with force ~F (Fig. 1B). By breaking the
string into little pieces as in (c), show that

the force that the string pulls on the block must also be ~F . Draw a free body (force)
diagram to justify your answer.

Another way to answer this: Consider your hand, the string, and the block as individual
objects. You exert force ~F on the string, and the string exerts reaction force back on
your hand, and the string also exerts force on the block. By treating the entire string as
a massless single object (instead of breaking it into pieces), show that the string must

exert a force ~F on the block. Draw a free body (force) diagram to justify your answer.

(e) Now consider two massless springs that follow Hooke’s law for springs (Fig. 1C).
These are called ”Hookian springs”. One spring has spring constant k1 and the other
has a spring constant k2. They are joined together at a single point, which is also a
massless point like the rest of the spring. The spring with spring constant k1 has its left
end attached to a wall and its right end glued to the other spring. The spring with the
spring constant k2 has its other end attached to a block of mass m. Now suppose that
the left spring is stretched by a distance ∆x1 and that the right spring is stretched by a
distance ∆x2. Draw a free body (force diagram) that shows all the forces acting on this
massless ”glued point” where the two springs are joined (Fig. 1C).

(f) Given the same set up as in (e), express ∆x2 in terms of ∆x1, k1, and k2. [Hint : The
point is massless (see part (b))].

(g) Given the same set up as in (e), what is the force acting on the block of mass m?
Assume there is no friction.
[Hint : The block is directly attached to only one of the springs. So it doesn’t know
anything about the spring with spring constant k1].

(h) By joining the two springs together, we create a single new Hookian spring whose
spring constant is knew (i.e. when you look at the system, you cannot actually tell that
two springs are joined together. Instead, you just see one spring). In this view, we would
interpret the situation in (e) in the following way: You pull the block to the right and as
a result, you stretch this single spring by a distance ∆x, where ∆x = ∆x1 + ∆x2. The
force that the resulting new spring exerts on the block is knew∆x to the left (since the
spring is stretched to the right). Using your results in (f), and (g), express ∆x in terms
of ∆x1, k1, and k2.

(i) Using (f), (g), and (h), express knew in terms of k1 and k2.
[Answer : knew = (k1k2)/(k1 + k2) ]

(j) Suppose you have a spring that’s neither stretched nor compressed (i.e. the spring is
at its ”rest length”). It has a spring constant k. You cut the spring in half. As a result,
you get two identical springs that are half the length of the original spring. Using your
result in (i), calculate the spring constant of each ”half” spring.
[Answer : khalf = 2k]
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Problem 2. Three blocks
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Figure 2: Three blocks with a massless and
frictionless pulley

Consider three blocks of masses m1, m2,
and m3. Block of mass m1 is joined to
a block of mass m2 by a massless rope,
and the block of mass m2 is joined to the
block of mass m3 by a massless rope. The
force of gravity is constant in this problem.
The acceleration due to gravity is ~g (a vec-
tor that points downwards). Let g = |~g|
(a positive number that is the magnitude
of the acceleration due to gravity). The
rope that connects m2 with m3 is wrapped
around a massless and frictionless pulley
wheel (Fig. 2).

In questions (a ∼ c), assume that there is no friction anywhere.

(a) For each block, draw a diagram that shows all the forces acting on that block.

(b) For each block, what is the acceleration? Give both the magnitude and the direction
of acceleration for each block.

(c) Calculate the tension T1 in the rope that joins m1 to m2. Also, calculate the tension
T2 in the rope that joins m2 to m3.

(d) Now suppose that there is friction between the floor and the two masses on top of it.
The coefficient of static friction bewteen the table and each block on the table is µs. All
blocks are initially at rest and are held together by your hands. For what values of µs

will the system of blocks start to move after you release your hands?

3



*Problem 3. Optical tweezers - Forces, work done, and energy
Parts (b) and (c) of this problem will appear on Quiz 2
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Figure 3: (A) Optical trap set up. One end
of DNA is attached to a glass slide and the
other end is attached to a polystyrene bead
(green circle) of mass m. It is trapped by
a beam of laser light (red) whose shape and
intensity is precisely sculpted by lenses. (B)
We can model the optical trap set up as a
block (representing the bead) of mass m that
is attached to two opposing springs, one with
a spring constant kDNA (representing spring-
like DNA) and another one with a spring
constant ktrap (representing spring-like opti-
cal trap).

As we discussed in the lecture, an opti-
cal tweezer is a device that consists of a
laser light and a micro-bead (e.g. spheri-
cal polystyrene bead of diameter ≈ 1 µm)
(Fig. 3A). The bead is trapped at the cen-
ter of the beam (call it x = 0). The op-
tical tweezer exerts a spring-like restoring
force on the polystyrene bead that tends
to bring back the bead to the beam cen-
ter if the bead is displaced from the center.
The light does this by constantly bombard-
ing the bead with particles of light called
”photons”. This bombardment tends to
bring back the bead to the center of the
trap (x = 0). Importantly, the laser light
exerts this restoring force that is propor-
tional to the displacement from the center.
Thus the laser light beam behaves like a
Hookian spring. Suppose in the set up,
the bead is attached to a DNA. The other
end of the DNA is attached to a glass slide
(Fig. 3A). The DNA can be stretched and
pulled, like a spring.

We can model the optical trap setup as
a block of mass m attached to two oppos-
ing Hookian springs (Fig. 3B). One spring,
representing the DNA, has a spring con-
stant kDNA. The other spring, representing
the laser beam, has a spring constant ktrap.
Let x = 0 be the trap center (where the
optical tweezer does not exert any force).
The trap center x = 0 is so far away from
the glass slide that the DNA is actually
stretched by distance L when the bead is
at x = 0.

(a) Write down the Newton’s 2nd law equation (~Fnet = m~a) for the bead.

(b) The equilibrium position is the position of the bead at which the bead has zero net
(total) force acting on it. When the bead is at the equilibrium position, by how much is
the DNA stretched? [ Answer : L(1− kDNA

kDNA+ktrap
) ]
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(c) What is the total energy (kinetic energy + potential energy) of the system when the
block is at equilibrium position and not moving? Here, you can leave your answer in
terms of kDNA, L, ktrap, and k, where we define k = kDNA/(ktrap + kDNA).

[Answer : L2

2
(kDNA(1− k)2 + ktrapk

2) ]

Now, when the block is resting at the equilibrium position, you quickly kick the block
(bead) so that it moves to the right with a speed v.

(d) Immediately after the block is kicked, what is the total kinetic energy of the system?

(e) For this kicked block, how far to the right (value of x) does the block reach before
stopping to turn around?

Now, let’s go back to the set up before the block (bead) is kicked to the right. The
block (bead) is resting at the equilibrium position that you calculated in (b). Now, you
suddenly turn off the laser light. In our model, this means that we cut the spring on the
right (i.e. we suddenly set ktrap = 0).

(f) Immediately after the right spring is cut, what is the acceleration (magnitude and
direction) and the velocity (magnitude and direction) of the block?

(g) Immediately after the right spring is cut, what is the total energy of the system?

[ Answer : kDNAL
2 (1−k)2

2
]

(h) You should find in (g) that the total energy of the system after turning off the laser
light is less than the total energy before turning off the laser light (or cutting the right
spring). So is the law of energy conservation violated here? If not, where did the energy
”disappear” to?
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Problem 4. Gravity and Taylor approximation
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Figure 4: (A) Newton’s law of gravity, (B)
Gravitational attraction between the Earth
and an object

According to Newton, a body of mass m1

attracts a body of mass m2 to itself with a
force

~F = −Gm1m2

r2
r̂ (1)

where G is a positive constant called the
Newton’s gravitational constant, and r̂
is the unit vector that starts from the
”source” object and terminates at the ”tar-
get” object (”unit vector” = vector of
length 1; we use the little hat ˆ to denote
unit vectors) (Fig. 4A). When the objects
are no longer point-sized but instead have
finite (i.e. non-zero) volume, then comput-
ing the gravitational force of attraction be-
tween the two objects becomes more com-
plicated. Specifically, you need to break
up the objects into little tiny pieces, com-
pute the attraction from each tiny piece,
then vectorially sum the forces due to each
tiny piece. It turns out that if you have
objects of ”nice” shape and mass distribu-
tion, then a simple rule governs the gravi-
tational force between those objects (we will see this when we discuss ”center of mass”
later in this course). One example is a sphere with a uniform mass density (i.e. the total
mass of the sphere is uniformly distributed all over, so the density is the same everywhere
in the sphere). Let’s treat our Earth as a sphere of radius R and mass M that is uniformly
distributed over itself (Fig. 4B). Suppose there’s also another spherical object, call it a
particle, of mass m whose size is negligible (so it’s basically a point object). This particle
is at a height h above the surface of the Earth. The particle’s position relative to the
center of the Earth is described by the position vector ~r that starts from the center of the
Earth and terminates at the particle’s location. Let r = |~r| be the length of this position
vector. Note that r = R + h. For these two ”nicely” shaped objects, the Earth exerts a
gravitational force on the particle equal to

~F = −GMm

r2
r̂ (2)

(a) Show that you can write the magnitude of the gravitational force as

F =
GMm

R2(1 + h
R

)2
(3)

Note that in our everyday life, h is much smaller than R. (i.e. h << R). In this case,
we can use an equation that looks much simpler than the one above to approximate the
gravitational force. Let’s derive this simpler equation step-by-step below.
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(b) First, let’s define a function

f(u) =
1

1 + u
(4)

Compute the Taylor series expansion of f(u) about zero. Recall that this is

f(u) = f(0) + uf (1)(0) + u2
f (2)(0)

2!
+ u3

f (3)(0)

3!
+ ... (5)

where f (j)(0) is the j-th derivative of f evaluated at u = 0. You can just compute the
first four terms in the series as shown above. Then you can write ”...” for the rest of the
series in your answer.

(c) Now suppose we let u = h/R. We want to know what happens when u is a very small
positive number (i.e. |u| << 1). Calculate the ratio of the 2nd order term in the Taylor
series (the term that involves u2) to the 1st order term in the Taylor series (the term that
involves u). Then show that you can pick a value of |u| to be so small that this ratio can
be made very small. In other words, show that you can make the 2nd order term to be
tiny compared to the 1st order term by making |u| to be very small.

(d) Now calculate the ratio of the 3rd order term (the term that involves u3) to the 2nd
order term (the term that involves u2). Show that this ratio can be made close to zero
by picking |u| to be a very small number.
[ Answer : Ratio = −4u

3
]

(e) Combining the results of (c) and (d), explain why the 3rd order term in the Taylor
series (the term that involves u3) is much much smaller than the 1st order term in the
Taylor series (the term that involves u).

(f) In fact, you can extend above reasoning to show that all terms that are higher than
1st order in the Taylor series are very small compared to the 1st order term. Thus if
we don’t care too much about being precise to atomic accuracy, we can ignore all those
terms and only keep the ”leading order” terms, which are the 0th order and the 1st order
terms. In other words, for |u| << 1, we can write

f(u) ≈ f(0) + uf (1)(0) (6)

For u = h/R, we certainly have |u| << 1. Show that we can approximate the
gravitational attraction force that you found in (a) as

F ≈ GMm

R2
(1− 2h

R
) (7)

This result shows that as you go above the Earth’s surface, but still remaining close the
Earth’s surface, the gravitational force decreases linearly as a function of the altitude h.

(g) Now, suppose you’re right at the surface of the Earth (h = 0). Calculate the numerical
value for the acceleration of the particle due to the force of gravity (here, you didn’t have
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to use Taylor approximation. You could just use the original formula that you found in
(a), and set h = 0 there. But the Taylor approximated formula in (f) also works here
too). You can use G = 6.67× 10−11Nm2/kg2, M = 5.97× 1024kg, and R = 6.37× 106m.
[ Answer : g ≈ 9.8m/s2 ]

So you see, the reason that we have been using mg as the force of gravity is because we
just assum h = 0 (i.e. h/R is so small that it’s basically zero). But this is a very crude
approximation.
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