
NB1140: Physics 1A - Classical mechanics and Thermodynamics
Problem set 3 - Gravity, center of mass, and conservation of linear

momentum
Week 3: 28 November - 2 December 2016

Problem 1. Tidal force
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Figure 1: (A) Two balls of mass m each are
gravitationally attracted towards the moon
of mass M in space. (B) Difference in grav-
itational pull on ball 1 and ball 2 creates a
tension in a massless rope that joins the two
balls. Here, the two balls move together as
if they were a single object. (C) Ball 1 and
the center of the moon lie on the x-axis while
ball 2 lies along the y-axis with ball 1.

In this problem, we calculate the tidal
force on an object. On Pg. 157 of the
book, you can read about the concept be-
hind ”tidal force”. In this problem, we cal-
culate this force. Main idea: Each part
of the Earth is gravitationally pulled to
the moon by different amounts because
each part of the Earth is a different dis-
tance from the moon. The same is true for
the gravitational attraction of the Earth to
the moon. These differing pulls cause the
ocean to bulge around the spherical Earth.
As we’re standing on the Earth, we (and
the Earth) rotate while the Ocean is not.
This causes the bulge to look to us as a
tide.

(a) Consider three objects: a moon with a
mass M and two identical balls of mass m
each (Figure 1A). The two balls are sep-
arated by a distance x. Ball 1 is at a
distance R from the center of the moon.
Calculate the total gravitational force that
ball 1 experiences and the total gravita-
tional force that ball 2 experiences. In-
dicate the direction of the force one each
ball (here, you can assume that the grav-
itational pull by the moon is much larger
than the gravitational pull that the balls
exert on each other).

(b) Let’s ignore the gravitational force that
the balls exert on each other. What is the
difference in the forces that the moon ex-
erts on ball 1 an ball 2? Get the exact
expression.

(c) For the difference in the gravitational force in (b), let us assume that x << R. With
this assumption, use Taylor approximation of 1/(1 + x/R)2, ignoring all terms that are
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higher than x/R (i.e. quadratic, cubic, quartic, etc.). From this approximation, show
that

GMm

R2
−

GMm

(R + x)2
≈

2GMmx

R3
(1)

Hint : Look at the Taylor approximation in the last problem of Problem set 2.

This difference in force is called a tidal force. Note that it’s not a real force but really
a fictitious force. The real forces are the forces of gravity. But this difference in force is
what you would feel if you were a ball 1 or a ball 2 falling towards the moon (or towards
an Earth). When you are falling down (or diving), you feel ”weightless”. But this doesn’t
mean that there is no net force acting on you. Gravity is pulling you downwards to the
ground. That’s why you are falling down in the first place. But what you actually feel

is something that goes against the force of gravity. For example, if you are standing on
the ground, you feel being pushed up by the ground that’s preventing you from falling
through the ground (i.e. the ground pushes you up while the gravity is pushing you
down). When you are in a free fall, there is no force counteracting the gravity. That is
why you don’t ”feel” any force acting you. Note that the tidal force decreases as 1/R3

and increases linearly as a function of the distance of separation between the two balls.

(d) To understand how the balls would feel such a ”counteracting force”, suppose a
massless rope connects the two balls while they are falling together towards the moon
(Fig. 1B). Everything else is the same as the previous set up (Fig. 1A). What is the
tension in this rope to first order in x (ignoring all higher order terms of x)? Here you
can assume that the two balls will move together as one object (they are both falling
towards the moon).
[Hint : By ”falling together”, we mean that the two balls move together (i.e. accelerate
together) as if they were a single body, like in Problem 1 of Problem set 2. First, calculate
the acceleration of the two conjoined bodies (total mass 2m) and then compute the tension
in the rope. Note here that the total force on the conjoined body is 2GMm

R2 − 2GMmx
R3 ].

[Answer : T = GMmx
R3 ]

This tension is what ball 1 and ball 2 would each feel. In other words, if you were ”ball
1” and your friend were ”ball 2”, and the two of you were joined by a massless rope and
falling towards the moon (or the Earth, if we were to replace the moon with the Earth),
then you would feel the tension between the two of you but not the force of gravity
(remember, when you fall freely, you feel no force).

(e) Now suppose we have a triangular configuration in which the moon and ball 1 are
at the opposite ends of a right-angled triangle’s base (horizontal line) while ball 1 and
ball 2 are at the opposite ends of the vertical line of the right-angled triangle (Figure
1C). The two balls are separated by a distance y (Fig. 1C). The moon’s center is at a
distance R from ball 1. Assume that y << R. The force that the moon exerts on ball
2 is GMm

R2+y2
. Ignore the gravitational pull of ball 1 by ball 2 and vice versa. Then with

Taylor approximation (excluding all terms of 2nd order in y/R and higher), show that
the force that the moon exerts on ball 2 is
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GMm

R2 + y2
≈

GMm

R2
(2)
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Figure 2: (A) Two high tides in a day. The
two arrows indicate the stretching of the
ocean surface relative to the person stand-
ing on a shoreline on Earth. (B) Two low
tides in a day. The two arrows indicate the
compression of the ocean surface relative to
the person standing on a shoreline on Earth.

(f) In (e), we see that to first order in
y/R, the moon exerts the same gravita-
tional force on ball 1 as it does on ball 2.
The only difference is in the direction of
the moon’s gravitational pull. Let ~F1 be
the gravitational force that the moon ex-
erts on ball 1 and ~F2 be the gravitational
force that the moon exerts on ball 2. In (e),

we showed that | ~F1| ≈ | ~F2|. Now, compute
the difference in the x-component (hori-
zontal component) of the two forces and
the difference in the y-component (vertical
component) of the two forces by using Tay-
lor series that excludes all terms of order
(y/R)2 or greater.
Answer :

~F1,x ≈ ~F2,x (3a)

~F1,y − ~F2,y ≈ −
GMmy

R3
ŷ (3b)

where ŷ is a unit vector that points ver-
tically upwards (i.e. vector of length one
that starts from ball 1 and ends at ball 2).
[ Hint : If θ is the angle between the line
that joins the moon and ball 1 and the line
that joins the moon and ball 2, then sin(θ) ≈ y/R to first order in y.]

(g) Equation 3b is the tidal force, which points along the y-axis, for a scenario in which
the two balls are arranged along the y-axis with the moon on the x-axis. Combing the
tidal force along the x-axis (equation 1) and the tidal force along the y-axis (equation
3b), we can now understand how the ocean’s tides rise high and fall low. The key is to
think of one ball as a point on the surface of the Earth and the other ball as a point at
the bottom of the ocean (on the ocean floor). Since the ocean water can flow and slosh
around, independent of the solid Earth, the ocean surface be elongated outward towards
the moon (Fig. 2). As you stand on the shoreline (part of solid Earth like the ocean
floor), you rotate with the Earth while the ocean water is free to move about. Relative
to you, it’s the ocean water that’s moving relative to you. Based on your answers from
the previous parts, explain in words why there would be two high tides and two low tides
per day (i.e. explain Figure 2).
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Problem 2. Synchronous orbit of two satellites around the Earth
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Figure 3: A planet of mass m orbits

around a planet of mass M and an-

other planet of mass m. The other

planet of mass m is synchronously

orbiting around the other two plan-

ets. Both m’s orbit at speed v in

a circle of radius R. The planet

of mass M is at the center of this

circle and the distance between the

center of M and centers of each m
is R.

Consider two identical of mass m orbiting the
Earth (Figure 3). The Earth has mass M . We
treat the Earth as a sphere of uniform mass density.
Each satellite is at a distance R from the center of
the Earth. The two satellites are at diametrically
opposite ends of a circle that they orbit in (Figure
3). Each satellite orbits around the Earth and the
other satellite at speed v.

(a) What is the centripetal force on each satellite
(both the direction and magnitude)?

(b) What is net the force acting on the Earth?

(c) Show that the period T of each satellite’s cir-
cular orbit (i.e. the time taken for each satellite to
go around the circle once) is

T = 4π

√

R3

G(4M +m)
(4)

(d) For the situation described here (Figure 3), the
Earth remains stationary. If the Earth moves, then
the motion of the whole system (the satellites and
the Earth) would get quite complicated. Suppose
you nudge (push) the Earth towards one of the two
satellites at some instant while the two satellites are
in orbit. Describe in words what the subsequent
motion of the two satellites and the Earth would
be. Based on this, is the synchronous orbit of the two satellites stable or unstable?

(e) Suppose that we replace one of the satellites with a different satellite that has a mass
m + δm. We keep the other satellite as it is (it still has mass m). Can such a system
sustain a synchronous orbit of the two satellites and the Earth remaining still at the
center?

This problem gives you an idea of how difficult it is to keep tens to hundreds of
satellites in orbit around the Earth (and any planet). To sustain satellites in orbit at
different radii around a common planet, satellites have to constantly propel themselves
(requires energy) to correct and adjust their orbit around the Earth. Otherwise, satellites
can collides or fall into each other (and eventually fall to the ground!).
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Problem 3. Gravitational energy of a complex configuration and work that
you do to dismantle it

(a) Consider an empty space. You then bring a particle of mass m1 from very far away
(in fact, out from ”infinity”) to a certain position in space. How much work do you do
in this process?

(b) Holding the first particle (of mass m1) firmly in its place so that it remains at rest,
gravitational pull of the first particle brings in a second particle, of mass m2, from very
far away (out from ”infinity”) to a position that is of distance r12 from the first particle.
How much work does the gravity do in this process?
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Figure 4: A polygon of four particles.

(c) Now while holding the two particles (of
masses m1 and m2) firmly in their place so
that they remain at rest, the gravitational
pull of both particles bring a third parti-
cle, of mass m3, from far away (out from
”infinity”) to a position that is of distance
r13 from the first particle (of mass m1) and
of distance r23 from the second particle (of
mass m2). What is the total amount of
work that gravity does to assemble this
triangle of particles starting from empty
space (from (a) to this part)?

(d) Suppose you dismantle the triangle in
(c) by kicking each of the three particles
out to infinity. How much work do you do
on the system (system = three particles) in
this process? [Hint : W = ∆U , where W
is the work that you do in a process and
∆U is the change in the potential energy
of the system in the process].

(e) Suppose you assemble a polygon consisting of four corners, with a particle at each
corner of the polygon (Figure 4). The particles have masses m1, m2, m3, and m4. The
distance between particle-i (of mass mi) and particle-j (of mass mj) is rij. Mimicking the
process described in (a)-(c), show that the gravitational potential energy of this polygon
of particles is

U = −
1

2

4
∑

i=1

4
∑

j=1

j 6=i

Gmimj

rij
(5)

(f) What is the work that you do to push all the charges out to infinity starting from this
polygonal configuration (Fig. 4) (i.e. the work that you do to dismantle the polygon by
kicking each particle out to infinity)?
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Problem 4. Calculating the center of mass
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Figure 5: Spheres

(a) Consider a sphere of radius R consisting of two solid
hemispheres (Figure 5A). The northern hemisphere has total
mass mn that is uniformly distributed throughout the hemi-
sphere. The southern hemisphere has total mass ms that is
uniformly distributed throughout the hemisphere. Let (x, y)
= (0, 0) be the center of the sphere. Where is the center of
mass? Calculate only the x-component of the position (cal-
culating the y-component of the center of mass’ position is
more difficult and involves some integrals).
[Answer : x = 0]

(b) Consider a uniform sphere of radius R and mass M (Fig-
ure 5B). The mass M is uniformly distributed throughout
the sphere. The center of this sphere is at (x, y)=(0,0). You
carve a spherical hole of radius r1 (r1 < R) out of this full
sphere. The center of the spherical hole coincides with the
center of the original sphere (they are both at (x, y) = (0,
0)). Where is the center of mass of this new hollow sphere?
[Answer : (x, y) = (0, 0)]

(c) Consider a uniform sphere of radius R and mass M (Fig-
ure 5C). The mass M is uniformly distributed throughout
the sphere. You carve a spherical hole of radius r (r < R/2)
out of this full sphere. The center of the spherical hole is
at (x, y) = (R/2, 0) and the center of the original sphere
(before hole is made) is at (x, y)=(0,0). Where is the center
of mass of this new hollow sphere?
[Answer : (x, y) = (−R

2

r3

R3−r3
, 0)]

Problem 5. Conservation of linear momentum and kinetic energy - (elastic
collision)

m M
v

Figure 6: 1-dimensional
collision

A mass m with speed v approaches a stationary mass
M . The masses bounce off each other elastically. What are
the final velocities of the particles? Assume that the entire
motion takes place in one dimension.
Answer :

vm =
(m−M)v

m+M
, vM =

2mv

m+M
(6)

Problem 6. Conservation of linear momentum and motion of center of mass
- (walking on a boat)
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Consider a boat of mass M and length L floating and remaining stationary on a
frictionless water. A person of mass m stands at the front of the boat. She then walks
down the length of the boat to the back of the boat. When she reaches the back, she
stops walking. Relative to the initial position, where is the final position of the boat on
the water?
[Answer Distance of mL

M+m
to the right of the boat’s initial position.]

Problem 7. Conservation of linear momentum but not kinetic energy - (In-
elastic collision)

A continuous stream of sand drops vertically at a rate R (mass / time) onto a moving
conveyor belt. Assume that just before landing on the belt, the speed of the sand is
nearly zero (i.e. sand is dropped from just above the belt rather than being dropped
from an appreciable height).

(a) What force must you apply to the conveyor belt to keep the belt moving at a constant
speed v at all times? [Hint : By definition, the rate of change of momentum = force]
[Answer : F = Rv ]

(b) How much kinetic energy does the sand gain per unit time? [Hint : Just before hitting
the belt, the kinetic energy of each sand grain is zero]
[Answer : Rv2/2 ]

(c) How much work do you do per unit time? [Note: this is also called the power]
[Answer : Rv2 ]

(d) How much energy is lost to heat per unit time? [Hint : The total energy is conserved
in any process. Here, any energy that is missing in the kinetic energy compared to the
work that you put in must go away into heat]
[Answer : Rv2/2 ]
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