
NB1140: Physics 1A - Classical mechanics and Thermodynamics
Solution set 1 - Describing motion of objects (Kinematics)

Week 1: 14- 18 November 2016

Solution to Problem 1. Squished between two trains (Zeno’s paradox)

(a) There are at least two ways to calculate d(t).

Method 1 : First, we know that at t = 0, we have d(0) = D. This distance decreases over
time because the two trains are getting closer to each other. So at later times, the initial
distance D is ”taken away” by the two trains. One train takes away a distance V t and
the other also takes away a distance V t. So a total of 2V t is taken away from D. So we
have

d(t) = D − V t− V t

= D − 2V t (1a)

Method 2 : Think of relative motions (in chapter 3). Suppose you’re standing inside the
left train. To you, the left train is not moving. The right is moving towards you at speed
2V (we say that the ”right train is moving at a speed 2V with respect to the left train”,
or ”right train is moving relative to the left train at a speed 2V ). This means that after
time t, the train is closer to you by a distance 2V t and d(0) = D. So we have

d(t) = D − 2V t (2)

(b) When the two trains meet at time tf , the distance between the two trains is zero. So
we have d(tf) = 0. Solving for tf in this equation, we get

d(tf) = 0 =⇒ 0 = D − 2V tf

tf =
D

2V
(3a)

(c) Each train travels at a constant speed V for time tf . Thus the total distance that
each train moves through is V tf :

V tf = V
D

2V
=⇒ total distance travelled by each train =

D

2
(4)

Note that above answers don’t depend on u because how the trains move is independent

of what the fly is doing.

(d) The answer must be D
2
because the two trains are the exact mirror images of each

other. In other words, if you flip the diagram left to right (i.e., flip the page along its
long edge), then you wouldn’t see that anything has changed (the picture would look
exactly the same to you). So if the trains were to meet at a point that’s not exactly
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halfway between the two, then one train must have moved more than the other during
time tf . But this cannot be because that means flipping the page should give you a
different picture. And we know that this doesn’t happen. So, indeed the answer must be
D
2
; the two trains meet exactly halfway between their initial positions.

(e) The fly is always moving at a constant speed u (but note that it does not move at
a constant velocity at all times because the fly turns around when it reaches one of the
trains). The fly is always moving at the speed u because we assume that the fly takes
zero time to turn around. The fly is moving as long as the trains give it room to move
around (i.e. until the two trains collide). So the fly is moving between t = 0 and t = tf .
So the total distance that it moves is

utf = u
D

2V
=⇒ total distance flown by the fly =

uD

2V
(5)

This distance does not depend on the initial position of the fly. You can see this from
the fact that we didn’t need to worry about where the fly is initially in the argument
above. The reason that the answer doesn’t depend on the fly’s initial position is that the
distance is just the speed times the total time taken for the motion, and the fly is always
able to move at this constant speed u. And the subtle reason that this can happen is that
u > V . If u < V , then the answer would depend on the fly’s initial position because one
of the trains would hit and push the fly from the fly’s back before the two trains meet. In
this case, the fly would no longer be flying at the constant speed u but would be pushed
at a constant speed V by one of the trains from its back.

(f) In its first one-way flight during time interval ∆t1), the combined distance flown
by the fly and the distance moved by the right train must equal D because this is the
distance between the fly and the right train at t = 0 and the two must meet after time
∆t1. So we have

D = u∆t1 + V∆t1

=⇒ ∆t1 =
D

u+ V
(6a)

The distance d1 flown by the fly during this time ∆t1 is

d1 = u∆t1 =⇒ d1 =
uD

u+ V
(7)

(g) During its second one-way flight (which takes time ∆t2), the combined distance flown
by the fly and the distance moved by the left train must equal (u− V )∆t1 because this
is the distance between the fly and the left train after the first one-way trip. The fly and
the left train must meet after time ∆t2 by closing this distance D2. These two facts lead
us to the following two equations

D2 = (u− V )∆t1 (8a)

D2 = (u+ V )∆t2 (8b)
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and thus

∆t2 =
u− V

u+ V
∆t1 (9)

and

d2 = u∆

= u
u− V

u+ V
∆t1

= u
u− V

u+ V

D

u+ V
(10a)

(h) Let’s follow the suggested steps to derive dn. First, we note that the distance Dn

between the incoming train and the fly at the end of the (n-1)st one-way trip is

Dn = (u− V )∆tn−1 (11)

due to the same argument as the one we used in part (g). Also by the same argument
as in part (g), we have

Dn = (u+ V )∆tn (12)

Above is because the fly and the incoming train must meet (i.e. fully close the gap,
which has distance Dn) by the end of the n-th one-way flight. From above two equations,
we can solve for ∆tn in terms of ∆tn−1:

∆tn =
u− V

u+ V
∆tn−1 (13)

and thus

dn = u∆tn

= u
u− V

u+ V
∆tn−1 (14a)

And by recursion (induction) relation, we get

∆tn =
u− V

u+ V
∆tn−1

=
u− V

u+ V

u− V

u+ V
∆tn−2

=
{u− V

u+ V

}3

∆tn−3

...

=
{u− V

u+ V

}n−1

∆t1

=
{u− V

u+ V

}n−1 D

u+ V
(15a)
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And so equation (14a) becomes

dn = u
{u− V

u+ V

}n−1 D

u+ V
(16)

(i) We want to compute the following infinite geometric sum

dtotal =
∞
∑

n=1

dn

=
∞
∑

n=1

u
{u− V

u+ V

}n−1 D

u+ V

=
uD

u+ V

∞
∑

n=1

{u− V

u+ V

}n−1

(17a)

In the last line above, we took the uD
u+V

(which is just the d1) outside the summation
because it’s a constant that doesn’t depend on n. The stuff inside the summation sign
is an infinite geometric sum. You learned to compute this in your analysis course. First
note that we have

u− V

u+ V
< 1 (18)

So the sum converges (i.e. the infinite sum gives a number instead of blowing up to
an infinity). This is also a fact that you learned in your analysis course. You have two
options to compute the sum: (1) just use the formula that you learned in your analysis
course, or (2) (the better option) derive this formula yourself. Let’s take option (2). Let’s
rewrite the sum in equation (17a):

∞
∑

n=1

{u− V

u+ V

}n−1

= 1 +
u− V

u+ V
+
{u− V

u+ V

}2

+
{u− V

u+ V

}3

+ ... (19)

If we define r = u−V
u+V

, then above equation is just

∞
∑

n=1

{u− V

u+ V

}n−1

= 1 + r + r2 + r3 + .... (20)

Multiplying both sides of above equation by r, we get

r

∞
∑

n=1

{u− V

u+ V

}n−1

= r + r2 + r3 + r4.... (21)

But the right hand side of above equation is actually just 1 less than the infinite sum
that we’re after in the first place:

r

∞
∑

n=1

{u− V

u+ V

}n−1

=

∞
∑

n=1

{u− V

u+ V

}n−1

− 1 (22)

Now, we can move the terms around in the above equation to isolate and then solve

for
∑∞

n=1

{

u−V
u+V

}n−1

. This gives us
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∞
∑

n=1

{u− V

u+ V

}n−1

=
1

1− r
(23)

The right hand side of above equation is exactly what you learned in your analysis
course. To finish this problem, we go back to equation (17a):

dtotal =
uD

u+ V

∞
∑

n=1

{u− V

u+ V

}n−1

=
uD

u+ V

1

1− r

=
uD

u+ V

1

1− (u− V )/(u+ V )

=
uD

u+ V

u+ V

2V

=
uD

2V
(24a)

This is exactly what you found in part (e) (equation (5)). We have used two different
methods, one that’s easier and one that’s harder, to get the same answer (as we should!).

We computed a sum of infinite number of dn’s instead of a finite number of them
because the fly has to take an infinite number of turns to travel this finite distance dtotal.
To see that, note that in part (h), we cannot have Dn = 0 (equation 11) because u > V
and thus ∆tn cannot be zero (because there’s always a non-zero gap distance between
the fly and the incoming train).

(j) This situation wouldn’t work for a real fly even if the real fly could instantaneously
turn around after reaching a train for its next one-way flight. This is because a real fly is
not a point object. It has a non-zero volume. So the Dn cannot keep on getting smaller
towards zero and have n → ∞. The fly is already dead at some finite value of n. To
be concrete, if the fly is a sphere with diameter h, then from equation (16), we see that
dn < h when we have

u
{u− V

u+ V

}n−1 D

u+ V
< h (25)

Solution to Problem 2. Why bugs spiral into light (logarithmic spiral)

(a) Let | ~V||| = V|| and | ~V⊥| = V⊥ (the lengths of these two vectors). From the right-angled
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triangle in figure 2, we get

V|| = V cos(θ) = V cos(
π

2
) = 0 (26a)

V⊥ = V sin(θ) = V sin(
π

2
) = V (26b)

Another way to get this is visually: When θ = π
2
, we don’t actually have a triangle.

The ~V|| disappears and we have ~V = ~V⊥.

(b) The bug moves around the circle of radius R at a constant speed V (but not at a
constant velocity). In fact, the bug performs a uniform circular motion with a centripetal
acceleration vector ~a whose length remains constant at v2

R
over time. The bug will never

fall into the lamp.

(c) Let | ~V||| = V|| and | ~V⊥| = V⊥ (the lengths of these two vectors). From the right-angled
triangle in figure 2, we get

V|| = V cos(θ) = V cos(0) = V (27a)

V⊥ = V sin(θ) = V sin(0) = 0 (27b)

Another way to get this is visually: When θ = 0, we don’t actually have a triangle.
The ~V⊥ disappears and we have ~V = ~V||.

(d) The bug no longer moves in a circle. It moves along a straight line (radial line)
joining the lamp and the bug itself. It moves along this radial line at a constant speed
~V|| = V . Since r(0) = R and the bug gets closer and closer to the lamp over time, we
know that r(t) must decrease over time until it becomes zero (that’s when the bug and
the lamp meet). In fact, we have

r(t) = R− V t (28)

The bug hits the lamp when r(t) = 0. From above equation, we can solve for t:

0 = R− V t

=⇒ t =
R

V
(29a)

So the bug arrives at the lamp at time t = R/V .

(e) Solution will be given after the quiz.

(f) Solution will be given after the quiz.

(g) To get φ(t) in radians, we will use the fact that at given instant of time t, the
instantaneous angular velocity dφ/dt is given by
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r(t)
dφ

dt
= V⊥ (30)

We will derive this result later in our course when we talk about angular motion. Plugging
into V⊥ what we found in part (e), we get

r(t)
dφ(t)

dt
= V sin(θ)

=⇒
dφ(t)

dt
= V

sin(θ)

r(t)

=⇒
dφ(t)

dt
=

V sin(θ)

R− V tcos(θ)

=⇒ dφ =
V sin(θ)

R− V tcos(θ)
dt

=⇒

∫ φ

0

dφ =

∫ t

0

V sin(θ)

R− V tcos(θ)
dt

=⇒ φ = V sin(θ)
log(R− V tcos(θ))

−V cos(θ)

∣

∣

∣

∣

t

0

=⇒ φ = −tan(θ)(log(R − V tcos(θ))− log(R))

=⇒ φ = −tan(θ)log

(

R− V tcos(θ)

R

)

(31a)

Here, the log is the natural logarithm (base e; sometimes written as ”ln”). Note that this
is in the form φ(t) = A · log(B(t)), with

A = −tan(θ) (32a)

B(t) =
R − V tcos(θ)

R
(32b)

Solution to Problem 3. Travelling faster than light

(a) Note that d · tan(θ) is the height of the yellow triangle. At this moment, the fly
moves up at speed u and thus increases the length of the yellow triangle’s height by rate
u (measured in length / time). If we wait a long time, then the base of the yellow triangle
will also move because the fly will have moved so far up. But here, we are considering
what happens at the next immediate (infinitesimal) moment in time later. In this case,
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we can ignore that the base of the triangle also moves up. So we have

u =
d(d · tan(θ))

dt

=⇒ u = d
d(tanθ)

dt

=⇒
d(tanθ)

dt
=

u

d
(33a)

(b) From the geometry of the big right-angled triangle in figure 3, we have

height of the big triangle = (d+ L)tanθ

=⇒
d(height of the big triangle)

dt
= (d+ L)

d

dt
(tanθ)

=⇒ v = (d+ L)
u

d
(34a)

(c) Let c be the speed of light. We want v > c. From above equation, this means

(d+ L)u

d
> c

=⇒ 1 +
L

d
>

c

u

=⇒
L

d
>

c

u
− 1 (35a)

(d) Plugging in the numbers: u = 1000km/h = 106m/3600s. Thus

c

u
− 1 =

3× 108m/s

106m
· (3600s)− 1 ≈ 11× 105 − 1 ≈ 105 (36)

In the last part of above equation, we ignore the ”1” because it’s so tiny compared to
105. Now d=1mm. So using equation (37a), we have

L ≈ 105 · 10−3m = 102m = 100m (37)

(Note that the inequality ”>” becomes an equality ”=” because we get the lower bound
of the inequality for the speed of light.)

Thus when L ≈ 100m, the shadow of the mini 747 will move at the speed of light.
Note that if the wall is further way than 100 m, the shadow will travel faster than the
speed of light.
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Solution to Problem 4. Bacterial chemotaxis: Random walk

time

velocity

V

-V

0
T 2T 3T 4T

time

position

VT

0 T 2T 3T 4T

Figure 1: Solution to problem 4(b)

(a) The graphs of position VS time and ve-
locity VS time are in Figure 1 on the right.
Watching over a long time, the average dis-
placement is V T

2
(we can see this from the

position VS time graph). The half-way
between the two extreme positions, 0 and
V T , is V T

2
. If you watch over a long time,

you find that the E. coli spends an equal
amount of time at positions x < V T

2
and

at x > V T
2
. Another acceptable answer is

that the E. coli doesn’t go anywhere over
time. The V T

2
is just a constant offset rela-

tive to the origin. It’s not important. The
important point is that the E. coli is stuck
in this region.

(b) The graphs of position VS time and
velocity VS time are in Figure 2 on the right. Over time, the E. coli ”drifts” to the right
on the line that it moves on (i.e. in the positive direction on the x-axis). This drift in
the +x direction is due to the longer travel time in the positive direction than in the
negative direction (this model is very simple but this is indeed the central element of real
(more complicated) chemotaxis of E. coli). We can approximate the average displacement
relative to the initial position by computing the average drift velocity Vavg:

time
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R
T
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2T
R
2T
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L

+

2VT
R
-VT

L

Figure 2: Solution to problem 4(a)

Vavg =
V TR − V TL

TR + TL

(38)

Thus the average displacement relative
to the E.coli’s initial position is

d(t) = Vavg · t

=
V TR − V TL

TR + TL

t (39a)
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