
NB1140: Physics 1A - Classical mechanics and Thermodynamics

Solution set 3 - Gravity, center of mass, and conservation of linear

momentum

Week 3: 28 November - 2 December 2016

Solution to problem 1.

(a) Ball 1 is pulled towards the moon and is also pulled towards ball 2. If we let the
positive x-axis be towards ball 2 (and thus the negative x-axis point towards the moon,
the total force on ball 1 is

Fball 1 = −GMm

R2
+

Gm2

x2
(1)

The total force on ball 2 is due to the pull by ball 1 (in the negative x-direction) and
the pull of the moon (in the negative x-direction):

Fball 2 = − GMm

(R + x)2
− Gm2

x2
(2)

If we assume that the moon exerts a larger gravitational attraction on each ball than
the gravitational force that the balls exert on each other, then Fball 1 is a negative number
(so the net force on ball 1 is towards the negative x-axis) and Fball 2 is also a negative
number (so the net force on ball 2 is towards the negative x-axis).

(b)

Fball 1 − Fball 2 = −GMm

R2
+

GMm

(R + x)2
(3)

This is a negative number because the force that the moon exerts on ball 1 is larger
in magnitude than the magnitude of the force that the moon exerts on ball 2 (because
ball 1 is closer to the moon than ball 2).

(c)

GMm

(R + x)2
=

GMm

R2(1 + x/R)2

≈ GMm

R2
(1− 2x

R
) (4a)

where we have used the Taylor approximation of 1/(1 + u)2 (with u = x/R around
zero) and ignored all the very small terms (terms with order that’s higher than u such as
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u2, u3, u4). So we have

Fball 1 − Fball 2 = −GMm

R2
+

GMm

(R + x)2

≈ −GMm

R2
+

GMm

R2
(1− 2x

R
)

= −2GMmx

R3
(5a)

According to our sign convention that we introduced in (a), the negative sign means
that this differential force points in the negative x-axis.

(d) A massless rope connects the two balls. The two balls move together as one object
of mass 2m. The total force on the system of two balls is Fball 1+Fball 2. This force must
be equal to total mass of the system (2m) times the acceleration of the system a:

Fball 1 + Fball 2 = 2ma

=⇒ −GMm

R2
− GMm

(R + x)2
= 2ma

=⇒ −GMm

R2
− GMm

R2
(1− 2x

R
) = 2ma

=⇒ −2GMm

R2
+

2GMmx

R3
= 2ma

=⇒ a = −GM

R2
+

GMx

R3
(6a)

From our lesson on center of mass, note here that the total force on the system
(system = 2 balls) is just the total external force on the system (the moon is external
to the system). The force that ball 1 exerts on 2 is cancelled out by the force that ball
2 exerts on ball 1 (by Newton’s 3rd law – these two are internal forces). Now, writing
the Newton’s 2nd law only for ball 1 (and ignoring the force that ball 2 exerts on ball 1
because we said in (a) that it will be much smaller than everything else), we obtain

Fball 1 + T = ma (7)

Here, T is a positive number (and we put a positive sign in front of it because it points
in the positive x-axis). Fball 1 is already a negative number so we don’t put a negative
sign in front of it (it’s a vector, so a number with a proper sign). So

Fball 1 + T = ma

=⇒ −GMm

R2
+ T = ma

=⇒ T = −GMm

R2
+

GMmx

R3
+

GMm

R2

=⇒ T =
GMmx

R3
(8a)
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(e) By Pythagorean theorem, the distance between the moon and ball 2 is
√

R2 + y2.
Thus by Newton’s law of gravity, the moon exerts gravitational pull on ball 2 of

Fball 2 =
GMm

R2 + y2
(9)

Now, we expand above with Taylor series expansion of 1/(R2 + y2). We then ignore
all terms that are higher order than y/R (assuming y << R). Doing this, we get

Fball 2 =
GMm

R2 + y2

=
GMm

R2(1 + (y/R)2)

≈ GMm

R2
(1− 2

y2

R2
)

≈ GMm

R2
(10a)

where we have ignored the y2/R2 term because it is of higher order than y/R.

(f) Let θ be the angle of the apex of the triangle (as defined in the problem). Now, this θ
must be very small (To be more precise, we say that |θ| << 1 ; i.e. θ is much smaller than
1 radians; why it’s one radians is not important here though). The point is that since
θ is such a small angle, we expect cos(θ) ≈ cos(0) = 1. So the horizontal component of
~Fball 2 has magnitude equal to

Fball 2cos(θ) ≈ Fball 2 =
GMm

R2
(11)

which is exactly the same as the force on ball 1 (which is entirely along the x-axis).
So, the x-component of the force of gravity of the moon on ball 1 is approximately equal
to the x-component of the force of gravity of the moon on ball 2.

Now, let’s look at the y-component. Note that

sin(θ) =
y

√

R2 + y2

=
y

R

1
√

1 + (y/R)2

≈ y

R
(1− 1

2

y2

R2
)

≈ y

R
(12a)

where we have used Taylor expansion of 1√
1+(y/R)2

and ignored all terms that are very

small (terms that are higher than y/R). So, the y-component of the force of gravity on
ball 2 is
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Fball 2sin(θ) ≈ Fball 2
y

R
=

GMmy

R3
(13)

The y-component of gravity force that the moon exerts on ball 1 is zero. So if we say
that the negative y-axis points downwards (towards the bottom of the page), then we
have

Fball 1, y − Fball 2, y =
GMmy

R3
(14)

(g) Consider the setups shown in Figure 2(A) and (B). In Figure 2(A), consider the side
of Earth that’s closer to the moon. Here, the ocean bulges outwards, towards the moon
as drawn in the picture. To understand this, we can consider ”ball 1” to be the surface of
the ocean and ”ball 2” to be the ocean floor (solid Earth). Then the surface of the ocean,
being closer to the moon than the ocean floor, will have higher gravitational pull towards
the moon than the ocean bottom. Here, we would observe a ”high tide”. In Figure
2(A), the side of the Earth that is furtherest away from the moon will also experience a
high tide. Here, we let ”ball 1” be the ocean bottom and ”ball 2” to be the surface of
the ocean. Then the ocean bottom is pulled stronger towards the moon than the ocean
surface. As an observer standing on Earth, you would see the ocean surface ”lag” behind
and thus bulging outwards as a high tide. It’s crucial to note here that the tide is a purely
relative phenomenon. Nothing actually ”pulling” the ocean surface away from the moon.
We can use the same logic to explain the low tides in Figure 2(B).

Solution to problem 2.

(a) On a given satellite of mass m, the centripetal force points radially towards the center

of the circle (center of the planet of mass M). The magnitude of the centripetal force ~Fc

is

Fc =
GMm

R2
+

Gm2

(2R)2

=
GMm

R2
+

Gm2

4R2
(15a)

This should also be equal to mv2

R
.

(b) The net force acting on the Earth is zero because it is pulled by each planet in
radially opposite directions (i.e. one satellite pulls the Earth radially towards itself, while
the other satellite (which is exactly on the opposite side of the circle) pulls the Earth
towards itself (thus radially opposing the pull of the first satellite).
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(c) From (a), we see two formulas for the centripetal force. We equate the two to get

mv2

R
=

GMm

R2
+

Gm2

4R2

=⇒ v2 =
G(4M +m)

4R

=⇒ v =

√

G(4M +m)

4R
(16a)

Then since the period T is the time taken to go around the circle of radius R once,
we have vT = 2πR and thus

=⇒ T =
2πR

v

=⇒ T = 2πR

√

4R

G(4M +m)

=⇒ T = 4π

√

R3

G(4M +m)
(17a)

(d) This orbit is unstable. To see this, note that if we push the Earth towards one of
the satellites at some instant, the Earth will be closer to one satellite than the other.
Then the satellite that the Earth is closer to, will exert more gravitational pull on the
Earth than the other satellite would on the Earth. Thus the Earth will now experience a
non-zero net force. As a result, the Earth will start to fall into the satellite that it’s closer
to while that satellite is also moving. The other satellite will also be affected because
the Earth now moves. The motion of all three bodies will be quite complicated. But we
can at least see that this circular orbit is disrupted and that the Earth will likely (and
it will) eventually collide with one of the satellites (and eventually the other satellite as
well). So this circular orbit that we are describing in this problem is a highly engineered
situation that can fall apart if you make even a small perturbation to the system. This
is what we call an ”unstable” system.

(e) The two satellites (one of mass m and the other of mass m+δm cannot be orbiting in
the same circle any more. This is because the Earth will experience a non-zero net force
on it due to the satellite with mass m + δm pulling on it more strongly than the other
satellite with mass m if the two satellites are the same radial distance away from the
Earth. Thus the Earth will not stand still. Therefore a circular orbit with both satellites
in the same circle moving at the same speed cannot exist. We can ask if it’s possible for
each satellite to occupy different circles (but both circles with the Earth at the center).
But this is a complicated question and we will not consider this here.

Solution to problem 3.

(a) You do no work (i.e. work = 0). Because there is nothing in space (no other object)
that exerts a force on the particle of mass m1 (i.e. there’s nothing to work against).
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(b) Gravitational pull of m1 does positive work on the particle of mass m2 because the
gravitational force on m2 is in the same direction as it’s displacement (both the force
and displacement vectors point towards m1’s location). The work that m1’s gravitational
pull (not your hand) does on m2 is equal to −∆U where U is the gravitational potential
energy of m2. Thus

Wdone by gravity = −∆U

=
Gm1m2

r12

Important to remember: the work that you do against gravity increases the gravi-
tational potential energy (i.e. you put in energy that is stored as the potential energy).
The work that gravity does to pull the particles inwards decreases the potential energy
(i.e. gravity has taken out energy from the stored potential energy to bring the particles
inwards).

(c) Let’s denote the work that we calculated in (a) by W0 and the work that we calculated
in (b) by W12. Then in bringing the third particle of mass m3, the gravitational pull of
m1 on m3 and the gravitational pull of m2 on m3 both do work in moving the particle
of mass m3 from infinity to its new position (this new position is at distance r12 from
m1 particle and at distance r23 from the m2 particle). Let W13 be the work that the
gravitational attraction between m1 and m3 does in bringing m3 inwards and let W23

be the work that the gravitational attraction between m2 and m3 does in bringing m3

inwards. Using the same reasoning as in (b), we have

W13 =
Gm1m3

r13
W23 =

Gm2m3

r23
(18)

Then the total work done by gravity to assemble the system of three particles is

Wdone by gravity = W0 +W12 +W13 +W23

= 0 +
Gm1m2

r12
+

Gm1m3

r13
+

Gm2m3

r23

Note that the change in the gravitational potential energy in going from the empty
space (initial configuration in (a)) to this final configuration of the three particles is
∆U = −Wdone by gravity, so

∆U = −Gm1m2

r12
− Gm1m3

r13
− Gm2m3

r23
(19)

And since initially (in (a)), all three particles are infinitely apart from each other, the
initial gravitational potential energy is zero. So ∆U = Ufinal − 0 = Ufinal, where U is the
gravitational energy of the final configuration of the three particles:

Ufinal = −Gm1m2

r12
− Gm1m3

r13
− Gm2m3

r23
(19)
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(d) The total work Wyou that you do in bringing each particle out to infinity, starting
from the final configuration of the three particles in (c), is equal to the change in the
gravitational potential energy ∆U in going from the initial configuration (all particles
together) to the final configuration (all particles out in infinity). We calculated the
change in potential energy in the reverse process in (c). So our ∆U must be -1 times the
change in potential energy that we calculated in (c). So

Wdone by you = ∆U

=
Gm1m2

r12
+

Gm1m3

r13
+

Gm2m3

r23

As a sanity check: Note that the work done by you is positive (and thus you put in
energy in the form of gravitational potential energy). This makes sense since you are
doing work against gravity. So you have to put in energy (which increases the potential
energy).

(e) Look at the Ufinal that we calculated in (c). With the four particles in their final
configuration (Figure 4 on the problem sheet), we need to apply the same reasoning that
we used for calculating the Ufinal in (c). The work that gravity does to assemble all four
particles must be the work that gravity does to assemble the three particles (calculated
in (c)) plus the work done to bring in the fourth particle (of mass m4). Let W14 be the
work that the gravitational pull of m1 does to bring in m4, W24 be the work that the
gravitational pull of m2 does to bring in m4, and W34 be the work that the gravitational
pull of m3 does to bring in m4. Then the total work done by gravity to assemble all four
particles (bringing all four particles from out in infinity to the final configuration of the
four particles) is

Wdone by gravity = W0 +W12 +W13 +W23 +W14 +W24 +W34

= 0 +
Gm1m2

r12
+

Gm1m3

r13
+

Gm2m3

r23
+

Gm1m4

r14
+

Gm2m4

r24
+

Gm3m4

r34

Now, gravity takes energy out from potential energy to do this work. So the change
in the gravitational potential energy is ∆U = −Wdone by gravity. And since the initial
potential energy (when everyone is at infinity) is zero, we have ∆U = Ufinal. So

Ufinal = −Wdone by gravity

= −Gm1m2

r12
− Gm1m3

r13
− Gm2m3

r23
− Gm1m4

r14
− Gm2m4

r24
− Gm3m4

r34

This is the answer and it’s fine to say that we’re done. But we can actually write above
equation in a compact (and thus nicer) form. Note that our reasoning above was one
that involved counting pairs. We make sure that we account for every pair of particles,
and then write down the energy for each pair. Now, note that each pair is counted once.
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But suppose we count each pair twice. In other words, say we count the gravitational
attraction that m1 has on m2 as one pair, and we also count the gravitational attraction
that m2 has on m1 as another pair (but in fact, they are the same). So if we add the
gravitational energy of these two pairs, then it’s the double the gravitational energy of
one of them. Say we do this ”double” counting for all pairs, then above equation for
Ufinal becomes

Ufinal = −1

2

4
∑

i=1

4
∑

j=1
j 6=i

Gmimj

rij
(22)

Another way to check this is by writing the above sum explicitly, term by term. Then
you will get the same expression for Ufinal as before.

(f) The total work that you do to bring all the particles out to infinity, starting from
all four particles together as a polygon, is -1 times the change in gravitational potential
energy you computed in (e). So it is

Wdone by you = −Ufinal

=
1

2

4
∑

i=1

4
∑

j=1
j 6=i

Gmimj

rij

Solution to problem 4.

(a) Let’s break the problem into the x-component and y-component. That is, we first
find the x-coordinate of the center of mass and then find the y-coordinate of the center
of mass separately (you can do this the other way around too). (x, y) = (0, 0) is the
center of this hybrid sphere. We want to find the position (xcm, ycm) of the center of
mass. Note that we can say, without calculations, that xcm = 0. Why? Well, suppose it
wasn’t. Say xcm = 3. Then the center of mass is to the right of the center of the sphere.
But the sphere looks the same on the left side of the y-axis as it does on the right side
of the y-axis (if you draw the y-axis, which is a vertical line that goes through the center
(0, 0), then you see that the right side of the y-axis is a mirror image of the left side of
the y-axis). So xcm cannot be equal to 3 (because there’s nothing special about the right
side of the y-axis). So xcm = 0 is the only position where it makes sense.

Calculating the ycm involves actual calculation and it’s actually complicated (involves
integrals). Let’s not do this.

(b) No calculation necessary here because the hollow sphere is still a symmetric object.
The center of mass is at (xcm, ycm) = (0, 0) by symmetry.

(c) Let (xcm, ycm) be the position of the center of mass of the sphere with the hole carved
out of it (a ”hollow sphere”). Let’s first calculate the xcm. We must have

Mxfull = mholexhole +mhollowxcm (23)

8



where xfull is the x-position of the full sphere’s center of mass, mhole and xhole are the
mass and the x-component of the sphere that was taken out to create the hole respectively,
and mhollow is the mass of the hollow sphere (the full sphere minus the hole). Now, we
know that xfull = 0 and xhole = R/2. We can calculate mhole and mhollow:

mhole =
M

(4/3)πR3
(4/3)πr3 mhollow = M −mhole (23)

Doing the above calculation, we get

mhole = M
r3

R3
mhollow = M(1 − r3

R3
) (23)

Plugging these into the first equation, we get

M · 0 = M
r3

R3

R

2
+M(1− r3

R3
)xcm (23)

Solving for xcm, we get

xcm =
r3

2R2
· R3

r3 −R3

=⇒ =
R

2
· r3

r3 − R3

As for the ycm, we see that the image above the x-axis is exactly the same as the
image below the x-axis (the two are mirror images of each other). Thus ycm = 0. Putting
everything together, we have

(xcm, ycm) = (
R

2
· r3

r3 −R3
, 0) (24)

Solution to problem 5

This is a straight forward calculation. Keep the total kinetic energy constant. And
also keep the total momentum also constant over time.

Solution to problem 6

The key here is that the total momentum of the system (system = person + boat) always
remains the same (remains at zero since nothing is moving initially). This is because there
is no net external force on the system (i.e. nothing outside the system exerts a net force on
the system). Gravity indeed acts on the system and gravity is an external force (because
the Earth that exerts the gravity is not part of our system). But the gravitational force
is cancelled out by the normal force that the water exerts on the system. So there is no
net external force. In this case, we know that the total momentum remains unchanged
(remains at zero in our case) and thus the center of mass of the system also remains
stationary all all times. So if we calculate the position of the center of mass before the
person starts to walk and then calculate it after the person stops. Let the initial position
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of the center of mass be x = 0 (this is a one-dimensional problem so no y here). If
we say that the front of the boat is located on the positive side of the x-axis, we have
xperson = L/2 being the person’s initial position. So initially, the center of mass is at
xcm, initial, where

xcm, initial =
mL/2 +M · 0

m+M

=
mL

2(m+M)

This is before the person starts to walk. As the person walks, the boat will move too.
But the center of mass of the whole system remains fixed at the same location. When the
person stops, the boat stops moving, and the center of mass of the whole system again
remains fixed at the same location. When the person stops, the center of the boat is at
position xboat and the girl is at x = xboat −L/2 (because the girl will be to the left of the
center of the boat by distance L/2). And the center of mass is at xcm,initial. So we have

xcm,initial =
Mxboat +m(xboat − L/2)

m+M

=⇒ mL

2(m+M)
=

Mxboat +m(xboat − L/2)

m+M

Solving for xboat gives us

xboat =
mL

M +m
(26)

This is the location of the boat’s center relative to the initial position (which was
zero) of the boat’s center.

Solution to problem 7

(a) As the sand is being added to the moving conveyor belt, if you don’t add any force,
the conveyor belt will slow down and eventually stop. The way to see this is that if the
conveyor belt has mass M , and is initially moving at velocity v (no arrow on top of the
v here because it’s one-dimension (so v can be positive or negative and that takes care
of the direction)). The the initial momentum of the conveyor belt is Mv. Just when
the sand grain hits the conveyor belt and lands on it, the sand exerts a force on the
conveyor belt. By Newton’s 3rd law, the conveyor belt exerts a force on the sand that
is equal in magnitude and opposite in direction. This pair of internal forces cancel out.
Importantly, there is no external force on this system. So the total momentum must be
conserved in this collision between the belt and the sand. If the sand has mass m, then
the total momentum must be (m + M)u, where u is the new velocity of the belt with
the sand on top of it (the sand and the belt are now moving together at velocity u). To
have the total momentum of the system being conserved, we must have (m+M)u = Mv.
This can only happen if u < v. So without you (or some external body) exerting some
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external force on the system, the belt will slow down and eventually stop. To keep the
belt moving at a constant velocity v, we must exert a force ~Fyou such that

~Fyou = −d~p

dt
(26)

where ~p is the total momentum of the system (system = sand + belt). The negative
sign in front of the derivative is saying that you have to apply a force that counteracts
the loss of momentum over time (i.e. dp/dt ¡ 0 without your force). Now if we let M(t)
be the total mass of the system at time t and the system (=sand already on the belt +
belt) is always moving at a constant velocity v because you’re applying a force F on it,
then the system’s momentum at time t is M(t)v. And we must have

Fyou =
d

dt
(M(t)v)

=
dM(t)

dt
v

= Rv

which is a constant. So you have to apply a constant force F = Rv at all times to
keep the belt moving at the constant velocity v.

(b) Assume that each sand grain is just gently placed on the moving belt (so the initial
grain has zero kinetic energy). After each sand grain lands on the moving belt, they move
at speed v. So at time t, the system’s total kinetic energy (= kinetic energy of belt +
kinetic energy of sand on the belt) is

KE =
M(t)v2

2
(27)

where M(t) is the total mass of the system at time t (as in (a)). So

d(KE)

dt
=

v2

2

dM(t)

dt
(27)

because v is constant over time. We know that dM/dt = R so

d(KE)

dt
=

Rv2

2
(27)

This is rate of kineetic energy gain by the sand particles (not the belt because the
belt’s mass doesn’t change over time and the belt’s speed always remains constant).

(c) You constantly apply a force F = Rv. And power P is P = Fv. So the power (=
work you do per unit time) is Rv2. Note that if you don’t remember that P = Fv, it’s
okay. The only thing you need to remember is that power is, by definition, rate of change
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of energy (work) per unit time. So

P =
dW

dt

=
d(Fdx)

dt

= F
dx

dt
= Fv

= Rv2

where dx is the infinitesimal distance that the system (=belt + sand on top of it)
travels in time interval dt.

(d) In (b), we found that per unit time, the kinetic energy of the system increases by
Rv2/2. In (c) we find that you put in energy (you do work) into the system per unit time
by an amount Rv2. So you put in more energy than the system gets per unit time. The
difference, Rv2/2 must be lost to heat.
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