
NB1140: Physics 1A - Classical mechanics and Thermodynamics

Solution set 4 - Rotational motion, torque, angular momenta, oscillations,

and waves

Week 7: 9 - 13 January 2017

Solution to problem 1.

(a) Rotational inertia Ik of the cylindrical kroket about its axis of symmetry. The cylinder
is a solid cylinder with a uniform mass density inside it. The mass density ρ is total mass
M divided by the cylinder’s volume. Thus it is

ρ =
M

πR2L
(1)

We can consider the solid cylinder to be made of layers of concentric hollow cylinders.
Each hollow cylinder has length L and an infinitesimal thickness dr. Let ri be the radius
of the concentric i-th cylinder. Then Ik is the sum of the rotational inertia of each
concentric cylinder:

Ik =
∑

i

(ρ2πriLdr)r
2
i (2)

The total mass of each cylindrical slab is (ρ2πriLdr). Above formula is nothing other
than the familiar formula for rotational inertia, mir

2
i . Seeing the dr in the summation,

we note that we can write above as an integral with r being the variable to integrate over
from r = 0 to r = R:

Ik =

∫ R

0

ρ2πLr3dr

= 2ρπL
r4

4
|R0

=
ρπLR4

2

=
MπLR4

2πR2L

=
MR2

2
(3a)

Thus the rotational inertia of the kroket is MR2

2
.

(b) We calculate the rotational inertia Ib of the spherical bitterball with a method similar
to the one we used in (a). We break up the spherical bitterball into concentric layers of
spherical slabs. Each spherical slab has a thickness dr. The radius of the i-th spherical
slab is ri. Ib is the sum of the rotational inertia of individual spherical slabs. The mass
M is uniformly distributed throughout the spherical bitterball. So we have the uniform
mass density ρ to be
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ρ =
3M

4πR3
(4)

The bitterball’s rotational inertia is thus

Ib =
∑

i

ρ4πr2i drr
2

i

=

∫ R

0

ρ4πr4dr

= 4ρπ
R5

5

=
3MR2

5
(5a)

(c) Since there is no rolling motion at all and both objects slide down the incline, the
shape of the object doesn’t matter at all. This is the typical ”block sliding down an
inclined plane” problem. The kroket and the bitterball have the same mass M . Thus
they both have the same acceleration a = gsin(θ). Thus both reach the bottom of the
inclined plane at the same time.

(d) Both roll down the inclined ramp without slipping. Both are released at the same
time from the top of ramp. The torque τ about the rotational axis of each object is

τ = ~r × ~Ff (6)

where ~Ff is the frictional force between the point of the contact of the rolling object
and the ramp and ~r is the position vector that emanates from the center of the rolling
object and terminates at the contact point. The magnitude of the torque vector is

|τ | = RFf (7)

Note that I~α = ~τ , where ~α is the angular acceleration. Thus we have

α =
RFf

I
(8)

We removed the arrows on top of α and τ and in doing so, we are saying that both
can be either positive or negative numbers (their signs determine the direction of each
vector). Rolling without slipping means that if the wheel rotates once, the center of the
wheel moves a distance equal to the circumference of the wheel. This means that Rα = a,
where a is the acceleration of the wheel. Thus above equation becomes

a =
R2Ff

I
(9)

By Newton’s 2nd law, we have (for both objects):

Ma = Ftotal

= Mgsin(θ)− Ff (10a)
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where we use ”+” direction to be downwards along the ramp and ”-” direction to be
upwards along the ramp. From equation (9), we can solve for Ff :

Ff =
Ia

R2
(11)

Plugging this into equation (10), we get

Ma = Mgsin(θ)− Ia

R2
(12)

Solving for a, we get

a = gsin(θ)− Ia

MR2

=⇒ a(MR2 + I)

MR2
= gsin(θ)

=⇒ a =
MR2gsin(θ)

I +MR2
(13a)

Note that the bitterball and the kroket have different values for I. But in both objects
(and for any objects), we can express the rotational inertia as cMR2, where c is some
dimensionless number that depends on the shape and mass distribution of the object. So
plugging this into above equation, we have

a =
MR2gsin(θ)

cMR2 +MR2

=
gsin(θ)

1 + c
(14a)

From parts (a) and (b), we know that the bitterball has rotational inertia Ib =
3MR2

5

and the kroket has rotational inertia Ik = MR2

2
. Thus for the bitterball, c = 3/5 and for

the kroket, c = 1/2. Plugging these into above equation, we have

ab =
5gsin(θ)

8
ak =

2gsin(θ)

3
(15)

ak is slightly larger than ab. Thus the kroket arrives at the bottom of the incline
before the bitterball.

Solution to problem 2.

(a) This problem appears on Quiz 3.

(b) The key in this problem is that the total angular momentum of the system (system =
disc + insect) is conserved. This means that the total angular momentum of the system
before the bug lands on the disc is the same as the total angular momentum of the system
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after the bug lands on the disc. Before landing on the disc, the total angular momentum
of the system is

~Lbefore = ~Lbug + ~Ldisc

= mvdẑ + Iωẑ

= (mvd+ Iω)ẑ (16a)

After the bug lands, the disc and the bug spin together with angular velocity ωf . The
total angular momentum of the system after the bug lands is

~Lafter = ~L′
bug + ~L′

disc

= md2ωf ẑ + Iωf ẑ

= (md2 + I)ωf ẑ (17a)

By conservation of total angular momentum, we have

(mvd+ Iω) = (md2 + I)ωf

=⇒ ωf =
mvd+ Iω

md2 + I
(18a)

Thus to have no change in angular speed (i.e. ωf = ω), we must have

md2ω = mvd

=⇒ v = ωd (19a)

(c) To double the angular speed (i.e. ωf = 2ω), we must have

2md2ω + Iω = mvd

=⇒ v = 2ωd+
I

md
ω

=⇒ = (2d+
I

md
)ω (20a)

Solution to Problem 3

(a) Let I be the rotational inertia of the uniform disc of radius R. Let ω be the initial
rotational speed (ω = 0.25 rad /s). Initially, everyone was rotating together at angular
speed ω. So the total angular momentum was initially

Linitial = (I +mR2)ω (21)

After the cockroach walks halfway to the center of the disk, it’s at a distance R/2
from the rotational axis (the center of the disc). The cockroach stops and the whole
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system spins together at angular velocity ωf . The total angular momentum is conserved.
So we have

Linitial = Lfinal

(I +mR2)ω = (I +m
R2

4
)ωf

ωf =
I +mR2

I +mR2/4
ω (22a)

For a uniform circular disc, we have I = MR2/2. We also have M = 10m. Thus we
have I = 5mR2 and

ωf =
24

21
ω (23)

(b)

Ko =
I +mR2

2
ω2 (24)

K =
I +mR2/4

2
ω2

f (25)

Thus

K

Ko
=

ω2
f

ω2

I +mR2/4

I +mR2

= (
24

21
)2
21

24

=
24

21
(26a)

(c) The cockroach has done work on the system (the energy comes from the chemically
stored energy inside the cockroach (e.g. ATP –¿ ADP)). This has increased the total
system’s kinetic energy (while the potential energy that was chemically stored in the
cockroach disappears).

Solution to Problem 4

This problem was solved in class.

Solution to Problem 5

a Substituting x(t) into the differential equation immediately gives mλ2+γλ+k = 0.

Solving this quadratic equation gives two solutions, λ± =
−γ±

√
γ2−4mk

2m
, except for

the special case γ = 2
√
km, where λ = −γ/2m.
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b The argument in the root is negative, so

x(t) = e−γt/2m
(

Ae+i
√

4mk−γ2t/2m +Be−i
√

4mk−γ2t/2m
)

,

x(t) = e−γt/2m
(

(A+B) cos(
√

4mk − γ2t/2m) + (Ai−Bi) sin(
√

4mk − γ2t/2m)
)

.

Because x(t = 0) = 0 we need the first term to vanish, so A = −B. Furthermore
we have v(t = 0) = v0, so Ai = mv0/

√

4mk − γ2, and we find

x(t) =
2mv0

√

4mk − γ2
e−γt/2m sin(

√

4mk − γ2t/2m).

c

x(t) = e−γt/2m
(

Ae+
√

γ2−4mkt/2m +Be−
√

γ2−4mkt/2m
)

The boundary condition x(t = 0) = 0 sets A = −B. We also have v(t = 0) = v0,
from which we find A = mv0/

√

γ2 − 4mk, and:

x(t) =
mv0

√

γ2 − 4mk
e−γt/2m

(

e+
√

γ2−4mkt/2m − e−
√

γ2−4mkt/2m
)

.

d λ = −γ/2m. At t = 0 we have x(t) = 0, so A = 0 and the other boundary condition

gives B = v0. Therefore x(t) = v0te
−

γt

2m

Solution to Problem 6

In class.
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