
Problem 1

1.a)
N particles: 3N positions + 3N velocities

Ω = (# of position states)× (# of velocity states)
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The number of position states of one particle is

Vtot
Vp

where Vp stands for the volume of the particle and Vtot for the total volume of the system. Since there
are N identical particles the total number of position states is given by

# of position states =

(
Vtot
Vp

)N
To calculate the number of velocity states we note that the energy of the system remains constant

E =
1

2
m

3N∑
i=1

v2i = constant

rearranging the equation we get

3N∑
i=1

v2i =
2E

m

which corresponds to the equation of a (3N − 1)−dimensional hyper-sphere with radius
√

2E/m in a
3N−dimensional space with coordinates {v1x, v1y, ..., vNz}. So the set of all possible velocities contains
all the vectors that start in the origin and end on the hyper-sphere.

# of velocity states =
A

cv

here, A represents the area of the hyper-sphere and cv is just a constant with the same dimensions as
A. Since the area of a 1-dimensional sphere (circle) with radius r is 2πr and the area of a 2-dimensional
sphere is 4πr2, we see that the area of a (3N − 1)−dimensional sphere will be given by car

3N−1; where
ca is a constant. In our problem, the radius of the sphere is

√
2E/m, so the number of velocity states is

# of velocity states =
ca
(
2E
m

) 3N−1
2

cv

Therefore

Ω =

(
ca

V Np cv

)(
V N
)(2E

m

) 3N−1
2

Entropy is simply given by S = kB ln Ω

S = kBN lnV + kB
3N

2
ln

(
2E

m

)
+ kB ln(constant)

where we have used the fact that N is large to make the approximation 3N−1
2 ≈ 3N

2 .

1.b)
if volume = V

S1 = kBN lnV + kB
3N

2
ln

(
2E

m

)
+ kB ln(constant)

if volume = 2V

S2 = kBN ln 2V + kB
3N

2
ln

(
2E

m

)
+ kB ln(constant)

so

∆S = S2 − S1 = kBN(ln 2V − lnV ) = kBN ln

(
2V

V

)
= kBN ln 2 > 0
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Problem 2

We know that it is a monoatomic and ideal gas. So pV = nRT . We also know that V1 = 7V0.

2.a)

Isothermal, so T0 = T1 = T . So for the p1 we can do:

p1 = nRT1

V1
= nRT

7v0
(16)

(17)

For the work we can fill in the ideal gas law in the formula for work.

W = −
∫ V1

V0

p dV (18)

W = −
∫ V1

V0

nRT

V
dV (19)

W = −nRT ln(7) (20)

To calculate the heat, Q, we use the formula ∆U = Q +W . The change in internal energy is zero, because it only
depends on temperature. This gives for the heat:

Q =−W = nRT ln(7) (21)

2.b)

Isobaric expansion. So the pressure is constant, p0 = p1.:

p1 = nRT0

V0
(22)

To calculate the final temperature we use the ideal gas law:

T1 = p1V1

nR
= 7p0v0

nR
(23)

T1 = 7T0 (24)

For the work we use again the same formula. However, now the pressure is constant, so we can take it out of the
integral.

W = −
∫ V1

V0

p dV (25)

W = −p
∫ V1

V0

dV (26)

W = −6p0V0 =−6nRT0
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In this case the internal energy of the system changes because the temperature changes. Therefor, we need te
calculate the internal energy change before we can calculate the heat. We know that a monoatomic gas has 3
degrees of freedom. For this reason we now that the internal energy is given by U = 3

2 nRT . Therefor, the internal
energy difference is:

∆U = 3

2
nR(T1 −T0) (28)

∆U = 9nRT0 (29)

We fill this in in the equation ∆U =Q +W and we get:

Q = 9nRT0 −−6nRT0 (30)

Q = 15nRT0 (31)

2.c)

In this case the expansion is adiabatic. So, the heat is zero, Q = 0. We also know that pV γ = const ant and T V γ−1.

We will use this to find P1 and T1. Before we can do that, we need to know gamma. We know γ= Cp

Cv
.

Cv = 1

n

∆U

∆T
(32)

Cv = 3

2
nR (33)

Cp = Cv +R = 5

2
R (34)

γ = Cp

Cv
= 5

3
(35)

Now, we can find p1 and T1

p1 = p0V γ
0

V γ
1

(36)

p1 = p0

7
5
3

= 7−
5
3

nRT0

V0
(37)

T1 = T0V γ−1
0

V γ−1
1

(38)

T1 = T0

7
2
3

(39)

In problem 1a we showed that in an adiabatic expansion the work is given by: W = p2V2−p1V1
γ−1 . So, our work will be:

W =
7−

5
3

nRT0
V0

7V0 − nRT0
V0

V0

2
3

(40)

W = 3

2
nRT0(7−

2
3 −1) (41)

Problem 3

3.a)

We have defined efficiency as

η=
∣∣∣∣ Work generated

Heat supplied by the heat source

∣∣∣∣
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We see from the Figure that Q1 corresponds to the energy supplied by the heat source and Q2 corresponds to the
energy rejected to the heat sink. Also, since the internal energy U is a function of state, the total change of energy
∆U in a whole cycle is zero, and hence from the First Law of Thermodynamics (∆U =Q +W ) we see that

|W | = |Q| = |Q1|− |Q2|
Therefore,

η=
∣∣∣∣ W

Q1

∣∣∣∣= |Q1|− |Q2|
|Q1|

= 1− |Q2|
|Q1|

3.b)

From Problem 1.b we see that for an adiabatic process connecting two points, A and B , in the PV diagram we have

WA→B = PB VB −P AVA

γ−1

3.b.i) Adiabatic compression from 1 to 2

W1→2 = P2V2 −P1V1

γ−1

3.b.ii) Adiabatic expansion from 3 to 4

W3→4 = P4V4 −P3V3

γ−1
= P4V1 −P3V2

γ−1

3.c)

From Problem 3.a we have

η= 1− |Q2|
|Q1|

From the First Law of Thermodynamics (dU = dQ +dW ), the relation dU =Cv dT (which implies ∆U =Cv∆T
for constant Cv ) and the fact that the process (2 → 3) is isochoric we have

∆U2→3 =Cv∆T2→3

and

∆U2→3 =Q1 −
∫ V3=V2

V2

PdV =Q1

And therefore

Q1 =Cv (T3 −T2)

Following an identical reasoning for process (4 → 1) we get

Q2 =Cv (T1 −T4)

So the efficiency can be written as

η= 1− |T3 −T2|
|T1 −T4|

= 1− T3 −T2

T4 −T1
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Rearranging the terms we obtain

η= 1− T2

T1

[
T3/T2 −1

T4/T1 −1

]
(42)

From Problem 1.a we know that for an adiabatic process

T V γ−1 = constant

and therefore

T3V γ−1
3 = T4V γ−1

4 (43)

T2V γ−1
2 = T1V γ−1

1 (44)

Taking the ratio of Eq. 43 to Eq. 44

T3V γ−1
3

T2V γ−1
2

= T4V γ−1
4

T1V γ−1
1

(45)

and noting that V2 =V3 and V1 =V4 we see that the volumes in Eq. 45 cancel out, and therefore

T3

T2
= T4

T1
(46)

Using Eq. 46 we can see that the term in brackets in Eq. 42 is equal to 1, and hence

η= 1− T2

T1
(47)

Now we can rearrange Eq. 44 to get

T2

T1
=

(
V1

V2

)γ−1

and substitute that in Eq. 47 to obtain

η= 1−
(

V1

V2

)γ−1

Finally, since r =V1/V2

η= 1−
(

1

r

)γ−1

= 1− (
r−1)γ−1 = 1− r 1−γ
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