the remaining of :

Chapters 13,14

Lecture Physics 1A January 18, 2017

Teun Huijben (3rd year NB)

Standing waves

$y(x,t) = 2A \cdot sin(kx) \cdot sin(\omega t)$

- no propagating, it is 'standing'
- maximum amplitude depending on x-position
- fixed number of wavelengths between walls

Standing waves

2 fixed ends: $L = m \cdot (\lambda/2)$ $m=1,2,3, \dots$

 $L = 3\lambda/4$

 $L = 5\lambda/4$

1 open+1 fixed end: L = (2n-1) · (λ/4) n=1,2,3, ...

Standing waves

Different displacement between the marked marbles?

Doppler effect

moving source:

B

longer λ

lower f

shorter λ higher f

A

Doppler effect

moving observer:

Temperature and Heat Chapter 16

Temperature

The **temperature** of a system is the average amount of **kinetic energy**.

• measured in scales: °C, K, F, ...

[T] = KT_C = T - 273.15 T_F = 9/5T_C + 32

Temperature ↔ Heat

The **temperature** of a system is the average amount of **kinetic energy**

Heat is the transferred energy between two objects wit a different T

Heat

Heat is the transferred energy between two objects wit a different T

• $Q = \mathbf{C} \cdot \Delta T$

 $\begin{array}{l} [\mathsf{Q}] = \mathsf{J} \\ \mathsf{C} = \textbf{heat capacity} \text{ (of object)} \\ [\mathsf{C}] = \mathsf{J} \cdot \mathsf{K}^{-1} \end{array}$

• $Q = \mathbf{m} \cdot \mathbf{c} \cdot \Delta T$

c =**specific heat** (of material) $[c] = J \cdot K^{-1} \cdot kg^{-1}$ example:

Shower

The temperature in the water heater is 18°C. If the heater holds 150 kg of water, how much energy will it take to bring it up to 50°C? If the energy is supplied by a 5.0-kW electric heating element, how long will that take?

 $C_{water} = 4184 J \cdot kg^{-1} \cdot K^{-1}$

example:

Aluminium in water

An aluminum frying pan of mass m_P is at temperature T_P when it's plunged into a sink containing m_W kg of water at temperature T_W . Assuming that none of the water boils and that no heat is lost to the surroundings, find the equilibrium temperature of the water and pan.

• **Conduction** = direct physical contact

$$H = -k \cdot A \cdot \frac{\Delta T}{\Delta x} = -\frac{\Delta T}{R}$$

H = heat flow in W k = thermal conductivity in W·m⁻¹·K⁻¹ R = thermal resistance in K·W⁻¹

• **Conduction** = direct physical contact

$$H = -k \cdot A \cdot \frac{\Delta T}{\Delta x} = -\frac{\Delta T}{R}$$

H = heat flow in Wk = thermal conductivity in W·m⁻¹·K⁻¹ R = thermal resistance in K·W⁻¹

• **Convection** = transfer by fluid motion

A, T

H

 Δx

 $+ \Delta T$

• **Conduction** = direct physical contact

$$H = -k \cdot A \cdot \frac{\Delta T}{\Delta x}$$

• **Convection** = transfer by fluid motion

heated fluid gets less dense and rises

• Radiation = emitting electromagnetic waves

• **Conduction** = direct physical contact

$$H = -k \cdot A \cdot \frac{\Delta T}{\Delta x}$$

• **Convection** = transfer by fluid motion

→ heated fluid gets less dense and rises

• **Radiation** = emitting electromagnetic waves

 $P = e\sigma AT^4$

- P = radiation power in W e = emissivity [0,1]
- σ = Stefan-Boltzman constant (5.67·10⁻⁸ W·m⁻²·K⁻⁴)

• **Conduction** = direct physical contact

$$H = -k \cdot A \cdot \frac{\Delta T}{\Delta x}$$

• **Convection** = transfer by fluid motion

→ heated fluid gets less dense and rises

• **Radiation** = emitting electromagnetic waves

$$P = e\sigma A T^{4}$$
$$P = e\sigma A (T^{4}_{surface} - T^{4}_{surrounding})$$

Thermal behaviour of Matter

Chapter 17

Ideal gas law

pV = nRT = nN_AkT = NkT

 $R = gas constant in J \cdot K^{-1} \cdot mol^{-1}$ = N_A·k_b = (6.022 \cdot 10^{23}) \cdot (1.38 \cdot 10^{-23}) = 8.13 J \cdot K^{-1} \cdot mol^{-1} Avogadro number Boltzman constant

assumptions:

- molecules have neligible size \rightarrow no collisions
- no attraction/repulsion between molecules
- randomly move in all directions
- collisions with the wall are elastic

Kinetic theory of ideal gas

The **temperature** of a system is the average amount of **kinetic energy**

example:

Speed nitrogen molecule

Find the average kinetic energy of a molecule with mass m in air at room temperature and determine its speed.

Phase changes

- L = Heat of **transformation** (J·kg⁻¹)
- $L_{f} = \text{Heat of fusion} \quad (\text{solid} \leftrightarrow \text{liquid})$ $L_{v} = \text{Heat of vaporation} \quad (\text{liquid} \leftrightarrow \text{gas})$ $L_{s} = \text{Heat of sublimation} \quad (\text{solid} \leftrightarrow \text{gas})$

 $Q = L \cdot m$

example:

Ice in water

When 200 g of ice at -10°C is added to 1.0 kg of water at 15°C, is there enough ice to cool the water to 0°C? If so, how much ice is left in the mixture?

$$C_{ice} = 2050 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$$

 $C_{water} = 4184 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
 $L_F = 334 \text{ kJ} \cdot \text{kg}^{-1}$

Thermal expansion

volume:

$$\beta = \frac{\Delta V/V}{\Delta T}$$

$$\beta = \text{coefficient of volume expansion (K-1)}$$

length:

$$\alpha = \frac{\Delta L/L}{\Delta T}$$

$$\alpha = \text{coefficient of linear expansion (K-1)}$$

 $\beta = 3\alpha$

example:

Linear expansion

Express the distance d in terms of L0 , ΔT , and the linear expansion coefficient α