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Entropy and information 
Entropy is one of the most fundamental concepts in science. It is so fundamental that you 

probably have heard it in everyday conversations at some point in your life. In this lecture, we 

will learn the quantitative definition of entropy, quantitative definition of "amount of 

information", find the connection between entropy and information, and apply it to physical 

and biological systems. This seems like a lot but as with the other topics in physics that we 

studied so far, if you keep in mind that all these seemingly many different things are 

governed by just a few principles, then you will be okay. 

 

Quantifying information 
Consider a coin. It has two sides: Head and tail. You throw the coin in the air. When it lands 

on the ground, it will land on either its tail or its head. Let's say that you throw the coin N 

times and write down the sequence of results. Say you write "0" for "head" and "1" for "tail".  

Then after throwing the coin N times, you might get the following sequence of events: 

00100110111011011...101  (sequence of N binary digits) 

You can think of this sequence of binary digits as a "message". After all, computers use 

binary digits. Each digit is called a bit. Looking at above sequence of bits, can you predict 

what the next digit would be if you flip the coin one more time? (i.e., can you guess whether 

you'll get a 0 or a 1?).  If you got a sequence like 

1111111...111 (sequence of N binary digits) 

then you might predict that if you flip the coin one more time, you'll get another "1". You'd 

suspect that the coin is engineered so that it prefers to land on a tail ("1"). But if you throw 

the coin N times and obtain the following sequence 

00100110111011011...1001  (sequence of N binary digits) 

then you cannot predict whether you'll get a "1" or a "0" at the next (N+1st) flip. You would 

say that getting a "0" is equally likely as getting a "1" at the next flip of the coin. Intuitively this 

is because the amount of disorder in the above sequence is fairly high. As seen in this 

example, the amount of disorder in the sequence "measures" how predictable a message is 

(here the message is the string of N bits). The higher the amount of disorder in a message, 

the more difficult it is for you to predict the next digit in the message. 

 We want to make this intuitive notion into a mathematical rigorous quantity. Let's 

propose a definition of the amount of information in a message, which may or may not be 

generated by flipping coins. We allow for non-binary messages. That is, in a string of N 

digits, we allow each digit to have one of M possible characters. In the coin flip example 

above, we had a binary bit (M=2). But other values for M are also possible. For example, 

suppose you are rolling a 6-sided dice. Then M=6. For the English language, M=26. Note 

that a string of N alphabet characters may not necessarily mean anything. For example, we 
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can have a message with length 5, such as afbcd. But this message doesn't mean anything 

in English. But it's okay. We don't ask whether the message has a meaning. The message 

can be anything, including non-sense.  

 Suppose we have N events (e.g., event = coin flip). Each event can have one of M 

possible outcomes. Suppose that each one of the M outcomes has an equal chance of 

occurring. Let's propose the following as a definition of the amount of information (I) in a 

string of N digits and see if it's a sensible definition: 

𝐼 = 𝑙𝑜𝑔&𝑀( 

 

Note that this is the number of binary digits (bits) required to represent a message of length 

N. We can rewrite above as 

𝐼 = 𝑁 ∙ 𝑙𝑜𝑔&𝑀 

We did not derive above equation. We are simply proposing this as our definition of the 

amount of information in a message. Is this a good definition? Is it sensible? Before 

addressing these questions, let's first rewrite above equation. Note that  

𝑙𝑜𝑔&𝑀	 = 	 (𝑙𝑜𝑔&𝑒)𝑙𝑛(𝑀)	 

where "ln" is the natural logarithm (log base e). To see this, note that if M=ex, then 

(𝑙𝑜𝑔&𝑒)𝑙𝑛(𝑀) becomes 𝑥(𝑙𝑜𝑔&𝑒), which in turn is equal to 𝑙𝑜𝑔&𝑒1, which is indeed equal to 

𝑙𝑜𝑔&𝑀.  Furthermore, we note that (𝑙𝑜𝑔&𝑒) = 1/ln(2), where "ln" is 𝑙𝑜𝑔2. Thus we can rewrite I 

as 

𝐼 = 𝑁𝐾(𝑙𝑛𝑀) 

where K=1/ln(2). Note that in the example of N binary digits (i.e., the N coin flips), we have 

I = N 

which is just the total number of digits in the sequence. I is just the total number of bits (0 or 

1) that is necessary to transmit all possible messages of length N, with each digit encoded by 

one of M possible characters. This is in fact what our computers do. More precisely, suppose 

you have a black box. You cannot see through it. You don't know exactly what is inside it. 

The only thing you know about the box is that inside it is a message of length N and that it is 

written in a language with M characters (e.g., M=26 for English). Say you want to store this 

message in your computer that uses binary digits (i.e., 0 or 1). How many bits should you 

reserve in your computer to store this message? The answer is I. Suppose inside the 

blackbox, you have a message of length 4 and you're told that it is written in binary digits (0s 

and 1s).  But you don't know any more than that. Our definition of I says that we need 4 bits 

reserved in our computer to store this message. Now, suppose you open the box and see 

that the message is 0001.  Once you know this by opening the black box, then in fact you 

can say  
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"Well, the three 0's in front of the '1' are unimportant. The 

computer only needs to know the '1'. So I only need to store 

the '1' in the computer and throw out the '0', just like when I 

write the number 810, I do not need to write 0000810. So 

actually, I don't need all those extra bits to store the '1'". 

 

But this is only because you opened the box. The main point is that if you were uncertain of 

what the message inside the box actually is, then you need to have those "place holders" in 

your computer as sort of a "back up" for all possible messages with length N in the box.  

 Why is the logarithm in our definition of amount of information I? The answer is that 

we want information to be additive. That is, we want to define the amount of information so 

that if we have two messages, one with length N1 that is written in a language that has M1 

characters, and another message with length N2 that is written in a language that has M2 

characters, then we want the total amount of information of the two messages written next to 

each other be I1+I2, where I1 is the amount of information of the 1st message and I2 is the 

amount of information of the 2nd message. This turns out to be true due to the logarithm in 

our definition. Let's check this. First note that  

𝐼4 = 𝑁4𝐾(𝑙𝑛𝑀4) 

and 

𝐼& = 𝑁&𝐾(𝑙𝑛𝑀&) 

Now if we write the two messages side-by-side, then the total length of the message is N1+N2 

and the total possible number of messages is  

𝑀4
(5𝑀&

(6 

Thus according to our definition of amount of information I, the total information of the two 

messages combined is  

𝐼 = 𝐾𝑙𝑛 𝑀4
(5𝑀&

(6  

																			= 𝐾𝑙𝑛(𝑀4
(5) + 𝐾𝑙𝑛(𝑀&

(6) 

																			= 𝑁4𝐾𝑙𝑛(𝑀4) + 𝑁&𝐾𝑙𝑛(𝑀&) 

                                                            	= 𝐼4 + 𝐼& 

Thus indeed, the logarithm in our definition of information quantity enables information from 

two messages to be additive. This matches our intuitive notion of what we think information 

content should be. 

 Let's note another property. If you do not know exactly what the message will be, but 

are only told that it has length N with each position having one of M possible characters, then 

the I as defined above tells you how many bits you need in order to represent every one of 

the possible MN messages. Having that many bits (I bits) ensures that you have enough bits 
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to cover the exact one message that you end up getting from your black box. But suppose 

M=1 and N=10. This means that the message is 10 letters long, each letter of the message 

must be of one particular alphabet because M=1. In this case, you know exactly what the 

message will be. It will be 

1111111111  (ten "1"s). 

Here we have 𝐼 = 𝑁𝐾(𝑙𝑛𝑀) = 10𝐾(𝑙𝑛1) 	= 	0. This means that because you know for certain 

what the message will come out of a machine, you have zero uncertainty in the content of 

the message.  

 So the higher the amount of information I is, the more uncertain you're about what 

message is contained inside the black box. Unlike the term "information" that we use in 

everyday conversations, the mathematical definition of information says that the more 

amount of information I you have, the more uncertain you're about the message that you're 

about to receive (or uncover by opening the box). This means that there is more disorder in 

the message inside the box. 

 

Quantifying entropy 
Suppose we have a box of volume V. It has N gas particles inside it. The total energy of all 

the particles combined is E.  Let's suppose that the box is closed off from the rest of the 

world. This means that no particles can enter or exit the box. So there will always be N 

particles inside the box. Also, we assume that no heat or other types of energy can enter or 

exit the box. Thus the total energy of the box is E at all times. We say that this kind of system 

is a closed system. We also call such a system an isolated system. 

 What can we say about such a box of particles? Well, at any given moment in time, 

each gas particle has some position and some velocity. Different particles will have different 

positions and likely different velocities. These particles are diffusing around, perhaps moving 

chaotically inside the box. Some particles will collide with each other, some will collide with 

the walls of the box, and so on. In summary, trying to keep track of each individual particle 

inside the box, especially when N is a large number, is a hopelessly complex task.  In fact, at 

a typical room temperature and pressure, there are about 1022 gas particles in a 1-liter box. 

That is a huge number of particles. It is practically impossible to measure the position and 

velocity of every one of the 1022 gas particles in a box at a given instant in time, and then 

apply Newton's laws to each particle to determine how every one of those 1022 gas particles 

will move. So we have two choices. One is to just give up and focus on a system with a few 

(two or three) objects, like a block sliding down an inclined plane (two objects). The other 

option is to find a different conceptual framework to understand a system with many 

particles.  
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 The second option is the one that scientists have taken. Let's turn to our box of N 

particles again. Again, assume that N is a large number. We clearly cannot say exactly 

where and how fast each of the N particles are moving inside the box at any given moment in 

time. But if we could measure the position and velocity of every particle inside the box at a 

given moment in time, that detailed state of the system of N particles is called the microstate 
of the system. Over time, the microstate of the box of particles will change at a mind-

boggling rate because every collision between any two particles causes a change in those 

two particles' positions and velocities (and thus changing the microstate, which is defined by 

the values of positions and velocities of every one of the N particles). So over time, many 

collisions between many particles will occur. This means that over time, we get a random 

sequence of microstates. It's randomly varying over time because there are chaotic and 

randomly moving and colliding particles inside the box. So we cannot predict the exact 

sequence of microstates over time. But we can predict how many microstates the box of 

particles can potentially have (notice that this situation is similar to the situation of our black 

box containing an unknown message). 

 Let W represent the total number of microstates that the box can be in. Here W is the 

Greek letter "Omega" (as a capitial letter, the small case form is w, which is also called 

"omega" and was used to represent an angular velocity). Entropy is defined as the amount of 

information in a physical system. Here a physical system can be a black box that contains 

gas particles instead of an unknown message. Say we have N particles inside the box 

instead of a message of length N. From our discussion of the amount of information I in the 

previous section, we know that the information content of a physical system is 𝐼 = 𝐾 ∙ 𝑙𝑛(Ω), 

where K = 1/ln2. Now note that for a typical physical system like a box of gas, W must be a 

very large number because there must be a huge number of microstates that the particles 

can be in. In fact, 𝑙𝑛(Ω) is typically much larger than the Avogadro number, 6.02 x 1023. As 

humans, we cannot understand such large numbers. So the convention is to multiply I by a 

small number to compensate for the typically astronomical values of 𝑙𝑛(Ω). Historically, this 

constant is related to the average thermal energy of a particle. That number is 𝑘< 𝐾, where 

kB is called the Boltzmann constant. It's value is 1.38 x 10-23 Joule/Kelvin.  So it is a 

constant that has units of energy / temperature. Note that it is a very small number. So 

multiplying 𝐼 = 𝐾𝑙𝑛(Ω) by this small number 𝑘< 𝐾 should give us a more manageable and 

humanly-understandable number. The result is called the entropy of the system: 𝑆 =
>?
@
𝐾𝑙𝑛(Ω). We multiply by 𝑘< 𝐾 instead of just kB for historical reasons. Thus the entropy is 

defined as 

𝑆 = 𝑘<𝑙𝑛(Ω) 
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This is the famous entropy formula. You might have seen it before. Now you also know 

where it comes from and why it is defined in this way. 𝑙𝑛(Ω) is a dimensionless number so S 

has the same dimension as the Boltzmann constant, energy / temperature. But note that at 

the end of the day, S is measuring the information content (disorder or the unpredictability) of 

a physical system such as a box of gas particles. The important quantity is the 𝑙𝑛(Ω), not the 

Boltzmann constant. 

 Let's make this idea concrete by calculating it for a concrete system.  We will 

consider a box of gas particles. We call it an "ideal gas". 

 

Example 1. Ideal gas of one particle inside a box with a fixed energy E 

What is the number of states that a box of gas particles can be in? 

To simplify our task, consider a box of volume V that contains just one particle. The particle 

has a kinetic energy. It has no potential energy (we ignore the gravitational energy of the 

particle). Say E is the kinetic energy. At a given time, the particle has a position (x, y, z) and 

velocity 𝑣. So we have 

 

𝐸	 = 	
1
2
𝑚𝑣& 

 

The total number of positions inside the box is 

ΩEFGHIHFJG =
𝑉
𝑎

 

where a is a small cubic volume ("pixel" of space, if you will). a can be the volume of the 

particle. Then above equation is just counting how many "pixels" of space can fit inside the 

box's volume V (i.e., the total number of positions that the particle can be in). At any position, 

the particle can move with velocity 𝑣. At each point, it can move in any direction. What is the 

total number of possible velocity vectors? As long as the length of the vector 𝑣 satisfies this 

equation 

𝐸	 = 	
1
2
𝑚𝑣& 

it is allowed. That is, any velocity vector that satisfies 𝑣 = 2𝐸/𝑚 is an allowed velocity 

vector of the particle. Note that a velocity vector can be written as 𝑣 = (𝑣1, 𝑣O, 𝑣P), a vector in 

3-dimensions. Such a vector lives in a "velocity space" rather than the more familiar "position 

space" that we usually call (x, y, z). Any vector in this velocity space whose arrowhead (tip) 

ends on the surface of a sphere of radius 2𝐸/𝑚 is an allowed velocity vector of the particle. 

Note that velocity vectors that point in all possible directions form this spherical surface. The 

surface area of the sphere A is 
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𝐴 = 4𝜋
2𝐸
𝑚

 

Note that A has dimension of speed squared (e.g., 𝑘𝑚 ℎ𝑟 &). This makes sense because 

that would be the area in the velocity space. In position space, the area would have 

dimension of length squared (e.g., km2). Just like we divided the volume V by the volume of 

the particle '	𝑎 ' to get a dimensionless number, we need to divide A by a constant that has 

dimension of speed squared in order to convert A into a dimensionless number, namely the 

number of velocities that the particle can have. It's not important to know exactly what this 

constant is. It comes from quantum mechanics. What is important is that you know why wee 

need it (i.e., the number of allowed velocities must be a dimensionless number). We will call 

this constant na. 

  

So the total number of states that the particle inside the box can have is 

Ω =
𝐴
𝑛V
ΩEFGHIHFJG 

So the entropy is: 

𝑆 = 𝑘< ln
𝐴
𝑛V
ΩEFGHIHFJG 	= 𝑘<𝑙𝑛(

4𝜋
𝑛V

2𝐸
𝑚
) 	+ 𝑘<𝑙𝑛(𝑉/𝑎) 

This is the famous entropy formula for a gas of one particle. It tells us that if you increase the 

box's volume V, then the entropy increases.  Above formula for entropy also says that the 

entropy increases if you increase energy. To get the rate of change of entropy with respect to 

energy, we can take the derivative of S with respect to energy: 
𝑑𝑆
𝑑𝐸

=
𝑘<
𝐸

 

This is a simple looking equation. Just rearranging some terms, we can rewrite above as 

𝐸 = 𝑘<
𝑑𝑆
𝑑𝐸

Z4

 

The term [\
[]

Z4
 on the right hand side of above equation has units of Kelvin, which is a unit 

of temperature. We use T to represent this: 

𝑇 =
𝑑𝑆
𝑑𝐸

Z4

 

T is called the temperature of the system. This is how we define the temperature. The 

important point is not whether you measure the temperature in Kelvins (the SI unit of 

conventional temperature) or in degrees Celsius. Rather, the important point is what 

temperature actually means. It's a rate of change that we found above. A high temperature 

means that if you change the energy of the gas particle, its entropy does not change much. 

In this case, dS/dE is small, so T is large. A low temperature means that if you change 

energy of the gas particle, its entropy changes by a lot. In this case, dS/dE is large, so T is 
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small. So temperature relates how the number of states that system (here a box of one gas 

particle) can have with its energy. Furthermore, if we now substitute 𝑇 into the above 

equation, we get 

𝐸 = 𝑘<𝑇 

So the temperature also measures the energy of the system. And it should, because we saw 

above that the fundamental temperature actually has units of energy. The only reason we 

measure it in Kelvins (or in degree Celsius, which is 273K + x (in C) = T), is because of the 

Boltzmann constant (again, nothing special, just a number so we can talk about temperature 

in Kelvins instead of energy in everyday language).  

 

Example 2. Ideal gas of N particles in a box of volume V and fixed energy E. 
Suppose now we have N particles inside a box. The total energy of all the particles combined 

is E. The box has volume V. What is the entropy of the box of gas particles? Here we have a 

constraint. The total energy of all the N particles in the box is E. That is, 

𝐸	 = 	
𝑚𝑣H&

2

(

H_4

 

Here vi is the speed of the particle number i. In terms of the i-th particle's velocity 𝑣H = (vi1, vi2, 

vi3), we can write the i-th particle's speed as 

𝑣H = 𝑣H  

= 		 𝑣H4& + 𝑣H&&+𝑣H`
& 

so we have 

𝑚𝑣H&

2
= 	

𝑚𝑣Ha&

2

`

a_4

 

and thus 

𝐸	 = 	
𝑚𝑣Ha&

2

`

a_4

(

H_4

 

Since the mass m is the same for every particle and the 1/2 also appears in every term in the 

sum, we can factor them outside the summation, and then rearrange the terms to get 

2𝐸
𝑚
	= 	 𝑣Ha&

`

a_4

(

H_4

 

Note that if we have N=1, we get back the situation in the previous example: The box of just 

one particle with energy E. Now we would like to repeat the kind of "area" calculation that we 

did for the case of one particle in the previous example. There we found that the velocity 

vector of the particle, defined by its three components, vx, vy, and vz, had to have a length 
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equal to 2𝐸/𝑚 but could point in any direction in the 3-dimensional space as long as it had 

this length. This meant that the tip of the vector (the arrowhead) had to lie on a surface of a 

sphere with radius 2𝐸/𝑚. The total number of such vectors was the surface area of the 

sphere. Now returning to our example here with N particles, the challenge is interpreting 

above equation in a similar way (i.e., in terms of a sphere). Except now, in the sum in the 

equation above, we have 3 terms for each i, and there are N values for i. So we have a total 

of 3N terms in the sum. Suppose you have a vector with p components like this: 

𝑥 = (𝑥4, 𝑥&, . . . , 𝑥EZ4, 𝑥	E) 

What is the length of this vector? Well we know that when p=2, we have a 2-dimensional 

space (i.e., a plane). There the vector would have length 

𝑥 = 	 𝑥4& + 𝑥&& 

And when p=3, we have a 3-dimensional space. There the vector would have length 

𝑥 = 	 𝑥4& + 𝑥&& + 𝑥`& 

Now, what happens when p=4? Can you guess what the length of the vector is in a 4-

dimensional space? The answer is 

𝑥 = 	 𝑥4& + 𝑥&& + 𝑥`& + 𝑥c& 

And in p-dimensions in general, the length of the vector is 

𝑥 = 	 𝑥4& + 𝑥&& + 𝑥`&+. . . +𝑥EZ4& + 𝑥E& 

For p > 3, it is tough to visualize what a p-dimensional space would look like. It is safe to say 

that no one really knows how to visualize space that has more than 3-dimensions. Even 

(almost) none of the mathematicians can visualize these higher dimensions! But we can 

imagine that just as there are 2 perpendicular axes in 2-dimensions of space (i.e., x-axis, and 

y-axis), and 3 perpendicular axes in 3-dimensions of pace (i.e., x-axis, y-axis, and z-axis), a 

p-dimensional space would consist of p perpendicular axes. Above formula for length comes 

from the fact that in p-dimensional space, there are p perpendicular axes (it's a 

generalization of Pythagorean theorem in p-dimensions). 

 Going back to our original problem of computing the entropy of N particles in a box, 

we can now see that right-hand side of the formula we derived above: 

2𝐸
𝑚
	= 	 𝑣Ha&

`

a_4

(

H_4

 

is representing the square of the length of a vector with 3N components. It is the length of a 

vector in 3N-dimensions of space (i.e., p=3N in above discussion). So above equation is 

describing a vector  that can point in any direction in a 3N-dimensions of space, but with a 

fixed length equal to 2𝐸/𝑚. Such a vector sweeps out a surface of a sphere in 3N-
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dimensional space. The surface will have dimension of 3N-1.  Now what is an area of a 

sphere in 3N dimensions? 

 In a 2-dimensional space (i.e., a plane), the equation 

𝐶& = 	 𝑥4& + 𝑥&& 

describes a circle of radius C (also called a 2-dimensional sphere of radius C). A vector 𝑥 =

(𝑥4, 𝑥&) that satisfies above equation is a vector with length C that points in any direction in 2-

dimensional space. That is, any vector whose tip (arrowhead) lies on the outline (boundary) 

of the circle. The circle has circumference (length) equal to 2𝜋𝐶. We also say that the 2-

dimensional sphere has boundary area equal to 2𝜋𝐶. 

 In a 3-dimensional space, the equation   

𝐶& = 	 𝑥4& + 𝑥&& + 𝑥`& 

describes a sphere of radius C (also called a 3-dimensional sphere of radius C). A vector 𝑥 =

(𝑥4, 𝑥&, 𝑥`) that satisfies above equation is a vector with length C that points in any direction 

in a 3-dimensional space. That is, any vector whose tip (arrowhead) lies on the surface 

(boundary) of the sphere. The sphere has surface area equal to 4𝜋𝐶&. We also say that the 

3-dimensional sphere has boundary area equal to 4𝜋𝐶&. 

 In a p-dimensional space, the equation 

𝐶& = 	 𝑥4& + 𝑥&& + 𝑥`&+. . . +𝑥EZ4& + 𝑥E& 

describes a p-dimensional sphere of radius C. A vector 𝑥 = (𝑥4, 𝑥&, 𝑥`, . . . 𝑥EZ4, 𝑥E) that 

satisfies above equation is a vector with length C that points in any direction in a p-

dimensional space. That is, any vector whose tip (arrowhead) lies on the surface (boundary) 

of the p-dimensional sphere. We want to know the boundary area of this p-dimensional 

sphere. By dimensional analysis and by looking at the pattern from 2-dimensional sphere 

(circle, 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑎𝑟𝑒𝑎	 = 	2𝜋𝐶) and 3-dimensional sphere (ordinarily called just a "sphere", 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑎𝑟𝑒𝑎	 = 	4𝜋𝐶&), can you guess what the boundary area of a p-dimensional sphere 

is? The answer is that the boundary area of a p-dimensional sphere is 𝜌𝐶EZ4, where r is just 

some number (like the 2𝜋	in the 2-dimesnional sphere and the 4𝜋 in the 4-dimensional 

sphere). For us the exact value for the constant r is unimportant. The important point is that 

the boundary area of the p-dimensional sphere depends on the radius as 𝐶EZ4. 

 Going back to our original problem, remember that we had 

2𝐸
𝑚
	= 	 𝑣Ha&

`

a_4

(

H_4

 

So based on our discussion above, this equation is telling us that we're interested in all 

vectors in 3N-dimensional space whose length is 2𝐸/𝑚 and whose tip (arrow head) ends 
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on a 3N-dimensional sphere of radius 2𝐸/𝑚. The area of the boundary of this 3N-

dimensional sphere is  

𝐴	 = 	𝜌
2𝐸
𝑚

`(Z4
&

 

Again, r is just some number that is not important for us. Then the total number of velocities 

that the system can have is 

Ωi2jFkHIO =
𝐴
𝑛V

 

where na is the area of the smallest pixel in 3N-dimensional space that you can have (it's a 

constant that we need to multiply A to get a dimensionless number Ωi2jFkHIO). Then the total 

number of states is 

Ω = ΩEFGHIHFJG×Ωi2jFkHIO 

Plugging in the results for ΩEFGHIHFJG and Ωi2jFkHIO, we have 

Ω =
𝑉
𝑎

( 𝜌
𝑛V

2𝐸
𝑚

`(Z4
&

 

So the entropy of the box of N particles is 

𝑆 = 𝑘<𝑙𝑛
𝑉
𝑎

( 𝜌
𝑛V

2𝐸
𝑚

`(Z4
&

	= 	 𝑘<𝑁𝑙𝑛(𝑉) +
3𝑁 − 1
2

𝑘<𝑙𝑛
2𝐸
𝑚

+ 𝑘<𝑙𝑛(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

And taking the derivative of S with respect to energy, we get 
𝑑𝑆
𝑑𝐸

= 𝑘<
3𝑁 − 1
2𝐸

 

This is a simple looking equation. Just rearranging some terms, we can rewrite above as 

𝐸 =
3𝑁 − 1
2

𝑘<
𝑑𝑆
𝑑𝐸

Z4

 

And as we noted in the previous example with one particle in a box, we have 

𝑇 =
𝑑𝑆
𝑑𝐸

Z4

 

thus we can rewrite above equation as 

𝐸 =
3𝑁 − 1
2

𝑘<𝑇 

We can make an approximation here. Above is an exact result for N particles. Typically we 

deal with very large number of particles (so N is very large). For example, we can have an 

Avogadro number of particles (i.e., N = 6.02 x 1023). Then N-1 is approximately equal to N. 

So we can write above equation in a simpler looking form as 

𝐸 =
3𝑁
2
𝑘<𝑇 
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Example 3. Relating temperature with molecular motion (N particles in a box with 
volume V)  
Here we will relate the temperature T in above equation with molecular motion of particles 

(this is the notion of T that you are perhaps more familiar with). The calculations that we will 

do in this example are also explained in Section 17.1 of your book.  

 First, let's calculate the force that one particle exerts on the walls of the box. The box 

contains N particles. But we will assume that each particle acts independently of each other. 

So if we know the average force that one particle exerts on the wall, then we just need to 

multiply it by N to get the average of the total force that all N particles exert on the wall of the 

box. Let's say that each molecule has mass m. Each molecule moves inside the box, hits the 

walls of the box, then bounces off it. Let's just focus on one particle now. Each time this 

particle hits a wall, there is an exchange of some momentum between the wall and the 

particle (it's a collision between two bodies, like the collision problems that we studied 

several weeks ago). To simplify our analysis, let's suppose that the particle is moving with 

speed vx and that it is moving parallel to one edge of the box (i.e., it is moving along the x-

axis). Each side of the box has length L. After the particle collides with the wall and bounces 

off the wall, the particle's linear momentum changes from mvx to -mvx (we're assuming elastic 

collision here, so momentum conservation says that this has to be the case). This means 

that the particle transfers momentum 2mvx to the wall (and the wall transfers momentum -

2mvx to the particle during the collision). This way the total momentum of the system (system 

= box + particle) remains unchanged after the collision. This should be the case due to 

conservation of momentum. This collision occurs every time that the molecule makes a 

round trip (from left end of the wall to the right end of the wall, then back and forth). This 

round trip takes a time Dt = 2L/vx. So the momentum transfer per unit time is  

Δ𝑝
∆𝑡

=
2𝑚𝑣1
∆𝑡

 

							=
2𝑚(𝑣1)&

2𝐿
 

							=
𝑚(𝑣1)&

𝐿
 

 

But we know that rate of change of momentum with respect to time is force by definition (i.e. 

𝐹 = 𝑑𝑝 𝑑𝑡). Thus, what we calculated above is actually the force that the particle colliding 

with the wall exerts on the wall. We assumed above that the particle has a fixed speed vx. 

But in reality, the particle's speed can vary. But for multiple collisions with the wall, the 

average force (momentum transfer / time) that the wall experiences is 

Δ𝑝
∆𝑡

	= 	 	
𝑚 𝑣1 &

𝐿
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											= 	
𝑚 𝑣1 &

𝐿
 

where . . .  represents average of "..." over many collisions. Now note that there are actually 

N particles inside the box. We assume that each particle acts independently of each other. 

Δ𝑝
∆𝑡

= 	𝑁
𝑚 𝑣1 &

𝐿
 

We denote 𝐹1 =
wE
∆I

. Then pressure p is defined as the force per area of the wall. If V is the 

volume of the box, then V=AL, where A is the surface area of one of the walls of the cubic 

box. Then we have 

𝑝 = 𝑁
𝑚 𝑣1 &

𝑉
 

Note that there's nothing special about the x-direction. In fact, we can see that  

𝑣1 & = 𝑣O
&
= 𝑣P &  

and 

𝑣& = 𝑣1 & + 𝑣O
&
+ 𝑣P &  

		= 3 𝑣1 &  

Thus above equation can be rewritten as 

𝑝 = 𝑁
𝑚 𝑣&

3𝑉
 

Rearranging the terms, we get 

3𝑝𝑉 = 𝑁𝑚 𝑣&  

Now, 

𝑁𝑚 𝑣& = 2𝐸 

Thus we have 
3𝑝𝑉
2

= 𝐸 

In the previous example, we derived 

𝐸 =
3𝑁
2
𝑘<𝑇 

And so we can rewrite this as 
3𝑝𝑉
2

=
3𝑁
2
𝑘<𝑇 

This becomes 

𝑝𝑉 = 𝑁𝑘<𝑇 

This is called the "ideal gas law". In examples 2 and 3, we have thus derived the famous 

ideal gas law that you have often been told without derivation.  
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Example 4. Expressing the entropy of ideal gas of N particles in terms of temperature 
In Example 2, we found  

𝑆 = 	𝑘<𝑁𝑙𝑛(𝑉) +
3𝑁
2
𝑘<𝑙𝑛

2𝐸
𝑚

+ 𝑘<𝑙𝑛(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Here we are using the approximation 3𝑁 − 1 ≈ 3𝑁 (assuming that N is large). Now, since  

𝐸 =
3
2
𝑁𝑘<𝑇 

we have 

𝑆(𝑇, 𝑉) = 	𝑁𝑘<𝑙𝑛(𝑉) +
3𝑁
2
𝑘<𝑙𝑛

3𝑁𝑘<𝑇
𝑚

+ 𝑘<𝑙𝑛(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Thus we see that if you increase the temperature, then the entropy increases as well. This is 

usually why we say that increasing the temperature tends to increase the amount of 

"disorder" of the system. 

 

 

 


