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Kinematics concerns describing how objects (atoms, blocks, cells, humans) move
without explaining why the objects move the way they do. In other words, we describe
the position, velocity, and acceleration of the object without going deeper into what’s
causing the object to have such position, velocity, and acceleration (i.e., without going
into what forces are acting on the object). In the next lecture, we will study dynamics,
which includes kinematics in addition to studying how forces acting on the objects cause
the motion.

1 1-dimensional motion: Motion along a line

One-dimensional motion of an object means that the position of the particle at all times
is confined along a line.

• x (t) = position of object at time t

• v(t) = velocity of object at time t

• a(t) = acceleration of object at time t

When do you put an arrow above the x, v, and a to write them as ~x, ~v, ~a ? You put
an arrow if you have a vector (=number with a direction) instead of a simple number.
In 1-dimension, there are only two directions: left and right on the number line (i.e.,
towards the negative direction or towards the positive direction). That’s why for objects
whose motions are confined to 1-dimension, we don’t need to put an arrow above the x,
v, and a. But in 2-dimensions and 3-dimensions, there are infinite number of directions,
not just two. So in 2-dimensions and 3-dimensions, putting an arrow above the ~x, ~v, and
~a makes a big difference in the meaning of those variables.

In one dimension, we only need to know the following on how x(t), v(t), and a(t) are
related to each other:

Relationships among x(t), v(t), and a(t):

v(t) =
dx

dt
(1)

a(t) =
dv

dt
=

d2x

dt2
(2)

And since integral is the inverse operation of differentiation, taking the integral of above
equations gives us the following:

"Inverse relationships" among x(t), v(t), and a(t):
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x(t)− x(to) =

∫ t

to

v(τ)dτ (3)

v(t)− v(to) =

∫ t

to

a(τ)dτ (4)

You might remember from your analysis (calculus) class that the τ is what we call a
"dummy variable" - it’s only purpose is to be inside the integral (Note that we cannot use
t and dt inside the integral because that t is a specific time that we’re interested in (and
is thus used outside the integral: For example in equation (3) we have x(t) - position at
a specific time t.

Example 1: Constant acceleration (also called "Uniform acceleration") in 1-
dimension:
Say an object is accelerating at a constant rate A. Determine the object’s velocity v(t)
and position x(t) for any time t.

Solution:

v(t)− v(to) =

∫ t

to

Adt = A · (t− to) (5a)

x(t) = x(to) +

∫ t

to

v(τ)dτ

= x(to) +

∫ t

to

[v(to) + A · (τ − to)]dτ

= x(to) + v(to) · (t− to)−Ato · (t− to) +
At2

2
− At2o

2
(5b)

Equation (5b) becomes simpler if just say that we will set to to be zero. That is,
we decide to start counting time (i.e., click on the "start" button on our timer). Then
equation (5b) becomes:

x(t) = x(0) + v(0) · t + At2

2
(6)

You probably saw this equation in your high school class. Now you know how to
derive it with calculus (derivatives and integrals).

2 2-dimensional and 3-dimensional motions: Moving

in a plane (2-dimensions) and space (3-dimensions)

Basically, 2-dimensional motion means that we simultaneously do 2 times (1-dimensional
motion) and 3-dimensional motion means that we simultaneously do 3 times (1-dimensional

2



motion). So we can use the knowledge from above section and separately apply to each
dimension.

In two dimensions, an object moves in a plane (e.g., xy-plane, yz-plane, xz-plane). In
other words, if an object is living on a piece of paper, it moves on the surface of the
paper and never leaves that surface. Here we need to use the "arrow" above the position,
velocity, and acceleration terms because they are vectors now:

Relationships among ~r(t), ~v(t), and ~a(t): 2D motion:

~r(t) = (x(t), y(t)) (7)

~v(t) = (vx(t), vy(t)) = (
dx

dt
,
dy

dt
) (8)

~a(t) = (ax(t), ay(t)) = (
dvx
dt

,
dvy
dt

) = (
d2x

dt2
,
d2y

dt2
) (9)

"Inverse relationships" among ~r(t), ~v(t), and ~a(t): 2D motion:
You just have to apply the "inverse relationships" for 1-dimension (equations (3) and

(4)) to each component here.

Example 2: Change in the position vector over time:
A bird is flying in the sky. It moves in 3-dimensions (i.e., it can go up/down, north/south,
west/east). Suppose it’s velocity is described by

~U(t) = (Vx
T − t

T
, Vy

1√
1 + kt

, 0) (10)

where Vx, Vy, T , and k are all constants (i.e. they don’t change over time). Suppose that
at t = 0, the bird is at position (x, y, z) = (x0, y0, z0) (here x0, y0, andz0 are constants as
well).

(a) What are the dimensions of all the constant parameters? [i.e. Do they have dimensions
of length, or time, or mass?]
[Hint: To solve this problem, note that you can only add two quantities if they have
the same dimensions. That is, you cannot add seconds to kg. You cannot add meters
to seconds, etc. By this reasoning, you cannot add a variable (or a constant parameter)
with a dimension of time (e.g. seconds) to a pure number. As an example, you cannot
add the pure number "1" to 3 seconds.]

(b) What is the bird’s position ~r(t) = (x(t), y(t), z(t)) at time t?

(c) At what time tf does the y-component of the bird’s position become 2y0?

(d) Is the total distance travelled by the bird between time t = 0 and t = tf equal to
√

(x(tf )− x0)2 + (y(tf)− y0)2? Why or why not? [Hint: the answer is "no"! Make sure
you understand why it isn’t].
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(e) Suppose now that the bird’s velocity is ~U(t) = (Vx, 0, Vx

√

t/T ) and that Vx > 0.
What is the total distance that the bird has travelled between time t = 0 and t = T ?

Solutions:

(a) We have (T − t) and we can only add or subtract two quantities with the same
dimension. So T has dimension of time (because t does too). Then note that (T − t)/T
is dimensionless (i.e. it doesn’t have any dimensions. It’s a pure number). And since we
need Vx

T−t
T

to have dimension of length / time (because this is the x-component of the
velocity), we must have Vx having a dimension of length / time. As for the y-component
velocity, note that kt is being added to a pure number (the number "1"). Since a pure
number is dimensionless, we must have kt being dimensionless too in order for us to add
it to the "1". This means that k must have a dimension of 1/time. Finally, since Vy

1√
1+kt

must have a dimension of length / time and 1√
1+kt

is dimensionless pure number, Vy must

have a dimension of length / time.

(b) We can solve component-by-component.

dx

dt
= Vx

T − t

T

=⇒ dx = Vx
T − t

T
dt

=⇒
∫ x

x0

dx =

∫ t

0

Vx
T − t

T
dt

=⇒ x− x0 = − Vx

2T
(T − t)2

∣

∣

∣

∣

t

0

=⇒ x(t) = x0 −
Vx

2T
[(T − t)2 − T 2] (11a)

dy

dt
= Vy

1√
1 + kt

=⇒ dy = Vy
1√

1 + kt
dt

=⇒
∫ y

y0

dy =

∫ t

0

Vy
1√

1 + kt
dt

=⇒ y − y0 =
2Vy

k

√
1 + kt

∣

∣

∣

∣

t

0

=⇒ y(t) = y0 +
2Vy

k
[
√
1 + kt− 1] (12a)

And since the bird has zero velocity in the z-component, it will stay at z0 at all times:
z(t) = z0. (you can also get this answer by calculating like above). Putting everything
together, we have

~r(t) = (x0 −
Vx

2T
[(T − t)2 − T 2], y0 +

2Vy

k
[
√
1 + kt− 1], z0) (13)
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(c) At tf , we have y(tf) = 2y0. So,

y(tf) = 2y0

=⇒ y0 =
2Vy

k
[
√

1 + ktf − 1]

=⇒ tf =

{

ky0
2Vy

+ 1
}2

− 1

k
(14a)

(d) The answer is no, the total distance travelled by the bird between t = 0 and t = tf
is not

√

(x(tf )− x0)2 + (y(tf)− y0)2. The reason is that the bird’s trajectory over time
is a not a straight line. It is actually curved line. So we need to take this curvature
into account. To see that the bird’s path over time is not a straight line, note that the
velocity vector ~U(t) is changing direction over time. To see this, write down the ratio of
the y-component velocity Uy(t) to x-component velocity Ux(t):

Uy(t)

Ux(t)
=

Vy

√
1 + ktT

Vx(T − t)
(15)

Note that this ratio changes over time. That means the "slope" of the vector (Ux(t), Uy(t))
also changes over time. Thus the bird traces out a curved path. The correct answer for
the total distance dtotal is

dtotal =

∫ tf

0

|~U(t)|dt (16)

where |~U(t)| is the speed of the bird at time t (it’s the length of the velocity vector
~U(t) at time t).

(e) The bird travels for time T . We want to know the total distance it travels given

that it’s velocity as a function of time is now ~U(t) = (Vx, 0, Vx

√

t/T ). Again, by the
same argument as above, we conclude that the bird traces out a curved path. If we know
at what speed the bird travels along this curved path, then we can calculate the total
distance. We first get the speed as a function of time t:

|~U(t)| =
√

V 2
x + V 2

x

t

T

= Vx

√

1 +
t

T
(17a)

This speed changes as a function of time. The bird travels between time t = 0 and
t = T . Thus the total distance dtotal travelled during this time (i.e. the total lenth of the
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curved path) is

dtotal =

∫ T

0

|~U(t)|dt

=

∫ T

0

Vx

√

1 +
t

T
dt

= Vx
2

3
T (1 +

t

T
)3/2

∣

∣

∣

∣

T

0

=
2VxT

3
(
√
8− 1) (18a)

Circular motion: A uniform circular motion means that an object is going around
in a perfect circle at a constant speed. It’s important to note that this particle does
not have a constant velocity because velocity is a vector; both its direction and length
must remain unchanged for us to say that the particle’s velocity remains constant. The
particle is moving around at a constant speed means that the length of the velocity
vector remains the same over time (i.e., speed = length of the velocity vector). But since
the particle’s moving in a circle, it’s direction of motion is constantly changing. So the
velocity is constantly changing. More specifically, we can see that the velocity vector
rotates in circle itself. So the object accelerates (because the velocity vector changes
over time). This is a special form of acceleration that we call centripetal acceleration.
This is special because this acceleration only causes the direction of the object’s velocity
vector to constantly change over time but not the magnitude of the velcoity vector (i.e.,
its speed). The magnitude of the acceleration vector doesn’t change (but it’s direction
does, in order to make the velocity vector rotate around in full circle, the centripetal
acceleration vector must rotate around a full circle as well). Your textbook shows you
how to calculate the magnitude of the centripetal acceleration vector (Pgs. 61- 62, 3rd
edition). Let me show you a different way of deriving the same formula here.

Example 3: Calculating the centripetal acceleration for a uniform circular
motion : A 2nd method - Different from the book: We will actually use the
method used in Example 3. Here, the idea is that we can write the position of the object
as a vector: ~r(t) = (x(t), y(t)). Then by taking its derivative twice, we would get the
acceleration vector ~a(t). Then we’re done! So the only difficult step here is determining
what x(t) and y(t) are. To do this, let’s draw a picture (almost always, draw a picture to
help orient yourself in physics problems). Consider an object moving around at a constant
speed in a circle of radius R with a constant speed v. Let’s also say that initially (t = 0),
the object is at the 12 o’clock position (considering the circle as a clock). Moreover,
let’s say that the object moves around clockwise, like an actual clock. We know that the
object will sweep the same angle per unit time because it’s moving at a constant speed
around the circle. Let’s say T is the period: the time the object takes to go around one
full circle. Then we have

T =
2πR

v
(19)
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because 2πR is the distance that the object have covered after going around the circle
once in time T . Moreover the angular speed (= angle swept out per unit time) in radians,
which we call ω, is

ω =
2π

T
(20)

This has units of radians/time. Note that we always measure angles in radians instead
of degrees in physics. This is just a convention, not for deep scientific reasons. If you
really wanted to, then in degrees / time we would have ω = 360◦

T
, in degrees/time. But

we’ll keep the ω in radians/time. Note that ωt is in fact the angle that the object sweeps
out in total in time t. To see this, note that when t = T/2, then the object must be
at the 6 o’clock position. That is, it must have swept out π radians (i.e., 180◦). That’s
exactly what ωt gives you. We have ωt = ω T

2
= 2π

T
T
2

= π. When t = T/4, we expect the
particle to be at the 3 o’clock position (i.e., π/2 radians, which is 90◦). Indeed, ωt also
gives us π/2. So everything checks out. The position of the object r(t) is thus

~r(t) = (x(t), y(t)) = (−Rsin(ωt), Rcos(ωt)) (21)

The velocity ~v(t) is, by definition, the derivative of r(t) with respect to time:

~v(t) =
d~r

dt

= (
dx

dt
,
dy

dt
)

= (−Rωcos(ωt),−Rωsin(ωt))

= (vx(t), vy(t)) (22a)

where vx(t) is the x-component velocity vector and vy(t) is the y-component velocity
vector. Finally, the acceleration is, again by definition, the following:

~a(t) =
d~v

dt

= (
dvx
dt

,
dvy
dt

)

= (ω2Rsin(ωt),−ω2Rcos(ωt))

= (ax(t), ay(t)) (23a)

where ax is the x-component acceleration vector and ay is the y-component acceler-
ation vector. First, let’s calculate the length of the acceleration vector as a function of
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time. The length |~a(t)| is

|~a(t)| =
√

a2x + a2y

=
√

ω4R2(sin2(ωt) + cos2(ωt))

= ω2R
√
1

= ω2R

=
{2π

T

}2

R

=
{ 2πv

2πR

}2

R

=
v2

R
(24a)

So the length of the acceleration vector is constant (it doesn’t change over time). This
length is always v2

R
. We call this the centripetal acceleration (note that your book

gives the same formula but derived in a different method). The length of the acceleration
vector is constant over time. But the vector itself constantly changes over time. We can
visualize how the acceleration vector changes over time by computing the dot product
between ~v and ~a:

~v(t) · ~a(t) = (vx(t), vy(t)) · (ax(t), ay(t))
= vx(t)ax(t) + vy(t)ay(t)

= −R2ω3cos(ωt)sin(ωt) +R2ω3sin(ωt)cos(ωt)

= 0 (25a)

We also know, by definition of dot product between two vectors, that

~v(t) · ~a(t) = |~v(t)||~a(t)|cos(φ) (26)

where φ is the angle between the two vectors ~v(t) and ~a(t). Since ~v(t) ·~a(t) = 0, this
means that cos(φ) =0 (this must be the case since the two vectors have non-zero lengths).
This in turn means that φ = π/2 (in radians). This is 90◦ in degrees. We know that the
velocity vector is always tangential to the circle. So ~a must either always point towards
the center or always away from the center. By computing the dot product between ~r and
~a, we can see that the ~a must be pointing towards the center of the circle (not away from
it) at all times (check this for yourself – You will need to know why getting ~r(t) · ~a(t) =
-1 and the fact that ~r(t) is a vector that points out of the center of the circle at (0, 0)
imply that ~r(t) and ~a(t) are parallel to each other and point in opposite directions).

Example 4: Two dimensional motion with variable velocity:

Caenorhabditis elegans is a ∼ 1 mm long roundworm that is a model organism. We call
it C. elegans for short. It is a useful organism to study animal development and for
neurosceince because it is completely transparent (so you can look at every cell inside the
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worm under a microscope) and consists of exactly 1031 cells (at least the males) which
is a small enough number that researchers can locate and characterize the function each
of the cells in the worm. Some forms of this worm (called the hermaphrodite) because it
consists of exactly 302 neurons and the connections among these neurons are all known.
In summary, it’s a remarkable organism. The worm also executes stereotyped movements.
The worm crawls on a surface like a sinusoidal wave. Suppose we look at the head of the
worm. It will move with velocity

~v(t) = (v0, v0cos(ωt))

= (vx(t), vy(t)) (27a)

This velocity vector has two components: x-component velocity vx (horizontal compo-
nent of motion) and y-component velocity vy (vertical component of motion). Note that
the horizontal component of velocity is constant (vx(t) = v0). The vertical component of
velocity varies over time as a cosine function (vy(t) = v0cos(ωt)). Let’s say the head of
the worm is at the location (x, y) = (0, 0) at t = 0.

(a) What is the position of the worm’s head at time t?

(b) What is the distance travelled by the worm after time t? You’ll get a difficult
integral here. You can leave your final answer as an unsolved integral). Also, what is the
displacement of the worm’s head after time t relative to its starting position (at t = 0)?
[Note the difference between distance and displacement.]

(c) Watching the worm’s motion over a long time, what would you say is the average
velocity of the worm’s head?

Solutions:

(a) The position ~r(t) = (x(t), y(t)) at time t is a vector with two components. Like
any two dimensional vector, we can break it up into the x-component (x(t)) and the y-
component (y(t)). x(t) and y(t) do not "interact" or "interfere" with each other because
they are orthogonal (independent) of each other. Practically, this means that we can
solve for x(t), and y(t) separately, and then put the two results together to get r(t).

x(t) = vx(t) · t
= v0t (28a)

So we have x(t). Now, let’s find y(t). This one is more tricky because vy(t) varies
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over time. Keeping in mind that by definition, dy/dt = vy(t), we have

dy

dt
= vy(t)

=⇒ dy = vy(t)dt

=⇒
∫ y

0

dy =

∫ t

0

v0cos(ωt)dt

=⇒ y(t)− 0 = v0
sin(ωt)

ω

=⇒ y(t) =
v0
ω
sin(ωt) (29a)

So putting x(t) and y(t) together, we have

~r(t) = (v0t,
v0
ω
sin(ωt)) (30)

as the position of the worm’s head at time t.

(b) First, the displacement of the worm’s head at time t relative to its starting position
(i.e. position at t = 0) is just ~r(t) [Remember: "displacement" at time t relative to the
initial position means the location at t relative to initial location]. The more tricky part is
calculating the total distance travelled by the worm’s head. First, note that the distance
depends on the speed (which is a number, not a vector). The speed is the length of the
velocity vector: |~v|:

|~v(t)| =
√

v20 + v20cos
2(ωt)

= v0
√

1 + cos2(ωt) (31a)

Thus the speed at time t is v0
√

1 + cos2(ωt). It changes as a function of time. The
total distance dtotal travelled after time t is

dtotal =

∫ t

0

|~v(t)|dt

= v0

∫ t

0

√

1 + cos2(ωt)dt (32a)

This is a difficult integral. We leave it as it is.

(c) Suppose we watch the worm moving for a long time T . We know that the worm head’s
velocity is constantly changing over time. But when you watch the worm for a long time,
you "feel" that it’s moving at some "constant" velocity (that is, you can ignore how the
worm’s velocity quickly varies every second if you’re interested in the gross movement of
the worm over a time period of several hours). This constant velocity is what we call an
average velocity ~vavg. It has the property that ~vavgT must equal the total displacement

10



after time T . ~vavg is a vector so we can break it up into x-component and y-components:
~vavg = (vx,avg, vy,avg). To get vx,avg, we note that

vx,avgT = v0T

=⇒ vx,avg = v0 (33a)

No surprise here. The x-component velocity is constant over time so the x-component
of the average velocity is also the same constant v0. The y-component of the average
velocity is more tricky. We have

vy,avgT =

∫ T

0

v0cos(ωt)dt

=⇒ vy,avg =
1

T

∫ T

0

v0cos(ωt)dt (34a)

There is a natural value to pick for T , which is just the time it takes for the cosine
function to go around once (i.e. ωT = 2π ; in other words, pick T to be the period). In
this case, we get

vy,avg =
1

T

∫ T

0

v0cos(ωt)dt

=
v0
Tω

(sin(ωT )− sin(0))

=
v0
Tω

(0− 0)

= 0 (35a)

vy,avg = 0. This makes sense because within one cycle of the cosine, the y-component
velocity vy has positive values that equally cancel out the negative values (due to the
nature of cosine function). By the same reasoning, we would get the same answer even if
we picked T to be 2× period, or 3× period, or any integer times the period. That is, if
T = nτ , where τ is one period of the cosine function and n is an integer (i.e. τω = 2π),
we would get

vy,avg =
1

T

∫ T

0

v0cos(ωt)dt

=
v0
nτω

(sin(nτω)− sin(0))

=
v0
Tω

(0− 0)

= 0 (36a)

Thus the same answer when T = nτ . Combining vx,avg and vy,avg , we have

~vavg = (v0, 0) (37)

This makes sense because after a long time T , the worm’s head has moved equal
amount upwards in y as it does downwards in y. Thus the y-component of displacement
is zero. The worm is always moving forward in the +x direction, on average, at speed v0.
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Example 5: Chemotaxis of the bacterium, E. coli :
The bacterium Escherichia coli (E. coli) finds its food (e.g., sugars, nutrients) by "smelling"
its way towards food. An analogy is that you smell a perfume because your friend sprayed
a lot of it on himself /herself. With your eyes closed, you walk around the room while
constantly sniffing. If the scent becomes stronger, then you know that you are walking in
the right direction. This way, you can eventually find your friend with your eyes closed.
. If the smell gets weaker, you know that you are moving away from your friend. In that
case, you would change the direction in which you walk. You randomly pick in which
direction you should walk towards. You check each time if the smell is getting stronger
or weaker. If it’s getting weaker, you stop walking and then again randomly pick a new
direction and then walk in that direction. You can repeat this until you pick a direction
in which the smell gets stronger. If the smell is getting stronger, you keep walking in that
direction without changing your direction of walk. Amazingly, the single-celled micro-
scopic bacterium, E. coli, does the same thing. It doesn’t have a nose like us but it has
receptors on its cell membrane that can bind "smell" molecules (like the "smell" receptors
inside our nose bind the perfume molecules and communicate it to our brain – that’s in
fact how we identify the smell). In E. coli, these receptors are called "chemoreceptors".
A chemo-attractant is a molecule that the E. coli likes and is thus drawn towards (such
as food: e.g., aspartamine). The chemoreceptors that are bound to a chemo-attractant
sends a signal to the cell’s nucleus and other inner parts, to coordinate the cell’s move-
ment (just like the activated smell receptors in your nose send a signal to your brain).
As the E. coli senses higher concentration of the chemoattractant, it keeps swimming in
that direction. If it senses that the concentration of the chemoattractant is decreasing,
it stops swimming in that direction, then randomly chooses a new direction, and then
swims in this new direction.

Let’s consider a simple model of chemotaxis. Suppose our E. coli can only swim along a
line. That is, it can either move to the right or move to the left.

(a) In the absence of food, the E. coli does not prefer one direction over the other
direction. It swims to the left at a constant speed V during a time interval ∆T , and then
it immediately turns to the right, and then swims at the same constant speed V during
time interval ∆T . The E. coli repeats this protocol over and over again. After watching
the cell moving for a long time, what would you say is the average velocity of the E. coli?

(b) Now there’s food on the right side. Smelling the diffusing chemoattract molecules
coming from its right, the E. coli now swims to the right for a longer period of time than
to the left. Let’s say that the E. coli is initially at x = 0. The food is at x = 4V∆T .
Suppose the E. coli initially swims to the right for time interval 2∆T at a constant speed
V . Afterwards, it immediately turns to the left, and then swims to the left at a constant
speed V for time interval ∆T . Afterwards, it immediately turns to the right, and swims
to the right at constant speed V for time duration 2∆T again. It then turns to the left,
and then swims at constant speed V for time duration ∆T . And then it repeats this
back-and-forth, over and over again until it reaches the food. When does the E. coli
reach the food? Assume that the E. coli first starts moving to the right at t = 0.
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(c) Same scenario as in (b) but now say the food is very far away from the origin (let’s
just say that the food is at x = ∞). Say you watch for a long time the E. coli moving
as in (b). What would you say is the average velocity of the E. coli? Also, after a long
time, where is the E. coli?

(d) Now, a different scenario. Suppose the E. coli swims straight from x = 0 to some food
at x = L, without ever turning back. Moreover, as the E. coli swims closer to the food,
the concentration of the chemoattractant increases, meaning that the E. coli ’s receptors
bind more of the chemoattractants. Let’s say that this causes the E. coli to swim faster
(so it accelerates over time as it gets closer to the food). Concretely, say that its velocity
is v(t) = v0e

t/T , where T is some constant time and v0 > 0. What is the average velocity
of the E. coli between time t = 0 and t = T ?

Solutions:

(a) The average velocity is a vector. In one dimension, this means that it can be either a
positive number or a negative number (negative number means that the average velocity
vector points to the left, and a positive number means that the average velocity vector
points to the right). Intuitively, you might be able to guess that the average velocity must
be zero, because the E. coli moves to the right at the same speed for an equal amount
of time as it moves to the left at the same speed. Mathematically, we can calculate this
as follows. Suppose we watch the E. coli for a time ttotal = N∆T (to make it easy for
ourselves, let’s say N is an even number). Then we know that the cell must go to the left
N/2 times and to the right N/2 times. So the average velocity is

Vavg =
V (N/2)∆T + (−V )(N/2)∆T

N∆T
= 0 (38a)

Above is just a formula for computing an average. Note that we have (-V) to indicate
velocity vector that points to the left (- direction), and (+V) to indicate velocity vector
to the right (+ direction). So indeed, the average velocity is zero.

(b) We can just write out the sequence of events:

4V∆T = 2V∆T − V∆T + 2V∆T − V∆T + 2V∆T (39)

So the total time ∆ttotal taken to reach the food at x = 4V∆T is

∆ttotal = 2∆T +∆T + 2∆T +∆T + 2∆T

= 8∆T (40a)

(c) As in (a), we average. For convenient, we pick the "long time" of observation (call it
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τ) to be τ = N∆T (for some large even integer N). Then as in (a), we average:

Vavg =
V (N/2)(2∆T ) + (−V )(N/2)∆T

N∆T

=
2V − V

2

=
V

2
(41a)

So the average velocity Vavg is V/2. Note that this is a positive number because V
(since it’s a speed) is a positive number (Speed cannot be a negative number). This
mean that on average, the E. coli moves to the right at an average speed of V/2, which is
smaller than V . This makes sense because the progress that the E. coli makes in moving
to the right is counteracted by its motion to the left. After a long time t, we can say that
the E. coli is at a position approximately equal to

x(t) = Vavgt =
V t

2
(42)

(d) The velocity is v(t) = v0e
t/T . Between t = 0 and t = T , the average velocity is

vavg =
1

T

∫ T

0

v0e
t/Tdt

=
v0
T
Tet/T

∣

∣

∣

∣

T

0

= v0(e− 1) (43a)

Above is just the formula for computing an average. One way to see this is by
reminding yourself what an integral is. Note that we can think of a timeline, going from
t = 0 to t = T , then chopping it into very tiny (infinitesimal) time intervals. Say we chop
it into N segments (N is a very large number). Let each time interval be of length ∆t.
Then we have ∆t = T/N . The idea is that we’ll make N so large that ∆t is very small,
so we can write ∆t = dt. Then our average formula in part (c) becomes

vavg =
v0e

t1/Tdt+ v0e
t2/Tdt+ ...+ v0e

tN/Tdt

T

=
1

T

∫ T

0

v0e
t/Tdt (44a)

Above is just the definition of the integral.
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