
Physics 1A for NB

Retake exam (full)

May 4, 2016, 9:00-12:00h

The exam consists of five problems. Make each problem on a separate answer sheet,
and hand the sheets in separately. Always show your work, and give full calculations /
derivations / arguments.

1 Testing your knowledge (6 points)

NB: When applicable, always explain your answers!

(a) For each of the following laws, indicate under which condition(s) (if any) they’re
valid: Conservation of energy, conservation of linear momentum, and conservation of
angular momentum.

(b) Sketch the position vs. time curve for a block attached to a spring that oscillates
back-and-forth as a simple harmonic oscillator without friction. You can assume
equilibrium position is at x = 0 cm and which is released at t = 0 s at x = 10 cm
with speed zero.

(c) Give the magnitude and direction of the rotation vector of the Earth for the rotation
that causes the day-night pattern (i.e. not the slower rotation of Earth around the
sun).

(d) Sketch the phase diagram of methane. Indicate all phases and relevant points. Don’t
forget to label your axes.

Answers:

(a) • Conservation of energy: all forces must be conservative, i.e., the work done by
the force moving between two points must be independent of the path chosen
[0.5 pt].

• Conservation of linear momentum: there must be no external forces acting on
the system [0.5 pt].

• Conservation of angular momentum: there must be no external torques acting
on the system [0.5 pt].

(b) See figure 1 [1 pt].
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(c) The Earth rotates about its North-South axis. The Sun rises in the East, so as seen
from above the North Pole, the Earth rotates counter-clockwise (to see this, consider
a stationary Sun and a rotating Earth). The rotation vector of the Earth thus points
upwards along the South to North Pole axis [0.5 pt], and has a magnitude of one
revolution per day, or 1/(24 · 60 · 60) = 1/86400 = 1.16 · 10−5 Hz [0.5 pt].

(d) See figure 2 [2.5 pt; subtract 0.5 pt each for missing axis labels, triple or critical point,
phases, wrong lines between phases, and not having the solid/gas line end up in the
origin].
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Figure 1: The position-time graph of an undamped harmonic oscillator for problem 1b.
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Figure 2: The phase diagram of methane (problem 1d).
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2 Energy of an electron - 7 points

The potential energy of an electron in a hydrogen atom is given by

U(r) = −a
r

+
b

r2
. (1)

Here a and b are positive constants and r is the distance to the origin (where the nucleus
of the atom is located).

(a) Give the dimensions of a and b.

(b) Does this potential energy produce an attractive or a repulsive force at small dis-
tances? And at large distances? (Hint: Sketch the U(r) as a function of r)

(c) Find the equilibrium point(s) of this potential energy and determine whether they
are stable equilibrium or unstable equilibrium points.

(d) An electron is released at r = ∞ with speed zero. Determine the maximum speed
the electron can get. (Hint: Total energy of an electron is the kinetic energy plus the
potential energy U(r). What is U(r) when r approaches infinity?)

(e) For the electron in (d) that is released from r =∞, find the minimum distance from
the nucleus (nucleus is at r=0) that the electron can travel to.

Answers:

(a) The dimension of U is energy, or force times distance, which is ML2T−2. De dimen-
sion of a is energy times distance, so [a] = ML3T−2 [0.5 pt]; de dimension of b is
energy times distance squared, so [b] = ML4T−2 [0.5 pt].

(b) Method 1 : The force is minus the derivative of the potential energy, so

F (r) = −dU

dr
= − a

r2
+

2b

r3
.

For small values of r the second term dominates, so F (r) is positive and the force is
repulsive; for large values of r the first term dominates, so F (r) is negative and the
force is attractive [1 pt].
Method 2 : We sketch the potential energy, see figure 3. From the sketch, we see
that for small values of r the slope of the potential energy is negative, so the force
is repulsive, and for large values of r the slope of U(r) is positive, so the force is
attractive [1 pt].

(c) To identify the equilibrium points, we look for positions where the force vanishes, i.e.
where the derivative of the potential is identically zero:

0 =
dU

dr
=

a

r2
− 2b

r3
⇒ r =

2b

a
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[1 pt]. To determine the stability of this point, we consider the second derivative of
the potential energy:

d2U

dr2

∣∣∣∣
r=2b/a

= −2a

r3
+

6b

r4

∣∣∣∣
r=2b/a

=
a4

8b3
> 0.

Because the second derivative is positive, the equilibrium point is stable. Because this
is moreover the only equilibrium point, this is the global minimum and the equilibrium
point is globally stable [1 pt]. Alternative: for the stability of the equilibrium point we
can also look at the graph of the potential energy, figure 3, from which we immediately
see that the equilibrium point corresponds to the global minumum of U(r), and
therefore is a stable equilibrium point [1 pt].

(d) At r =∞ the potential energy equals U(∞) = 0, so the total energy of the particle is
E = K+U = 0. The total energy is conserved, so the kinetic energy is maximal when
the potential energy is minimal, which happens at the global minimum of U(r) at
r = 2b/a: U(2b/a) = −a2/4b [1 pt]. The maximum kinetic energy is therefore a2/4b,
and the maximum speed follows from Kmax = 1

2
mv2max = a2/4b, so vmax = a/

√
2mb

[1 pt].

(e) The minimum distance to the nucleus (at the origin) is reached at the point where
the kinetic energy is (again) zero, and the potential energy equals that of the starting
point (here r =∞ en U(∞) = 0) [0.5 pt]. We therefore need to solve U(r) = 0, so:

0 = U(r) = −a
r

+
b

r2
⇒ r =

b

a

[0.5 pt].
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Figure 3: The potential energy of problem 2 (here with a = b = 1). NB: The shape of
the graph is the same for any choice of a en b as long as they are both positive.
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3 Mechanics - 8 points

.

Figure 4: A ball
resting on a wall
(problem 3b).

(a) A shell is shot with an initial velocity of 25 m/s, at an angle
of 50◦ with the horizontal. At the top of the trajectory, the
shell explodes into two fragments of equal mass. One fragment,
whose speed immediately after the explosion is zero, drops to
the ground vertically. How far from the gun does the other
fragment land (assuming no air drag and level terrain)?

(b) A uniform sphere of radius R is supported by a rope attached to
a vertical wall, as shown in figure 4. The rope joins the sphere
at a point where a continuation of the rope would intersect
a horizontal line through the sphere’s center a distance R/2
beyond the center, as shown in figure 1. What is the smallest
possible value for the coefficient of friction between wall and
sphere?

(c) A proton (mass 1 u, i.e. mass of one proton) moving at v1 =
6.90 · 106 m/s collides elastically and head-on with a second particle moving in the
opposite direction at v2 = 2.80 · 106 m/s. After the collision, the proton is moving
opposite to its initial direction at 8.62 · 106 m/s. Find the mass (in unit of u) and
final velocity of the second particle.

Answers:

(a) We split this problem into two parts. First we calculate the horizontal distance
traveled while going upward. The second half is after the break up. From momentum
conservation we calculate the new velocity and from that we can and the distance
traveled while descending.

(1) Ascending: We can find the time t1 it takes to reach the highest point hmax from

vy(t) = vy(0)− gt
0 = v sin θ − gt

t1 =
v sin θ

g

[0.5 pt]. The distance traveled is then

x1 = vx(0)t = v cos θt1 =
v2

g
cos θ sin θ

[0.5 pt].

(2) Descending: The shell (mass 2m) breaks apart into two pieces of equal mass m.
Before the breakup, the shell (at the top) has a velocity ~v = vx(0)x̂ = v cos θx̂.
Conservation of momentum in the x-direction then gives:

2mv cos θ = mvx,1 +mvx,2

2v cos θ = vx,2

5



as vx,1 = 0 [0.5 pt]. In the absence of air resistance, the time t1 it takes to reach
the highest altitude is the same as the time t2 it takes to fall [0.5 pt]. The distance
traveled in the fall equals x2 = vx,2t2. The total distance traveled is thus:

x = x1 + x2 = v cos θt1 + 2v cos θt2 = 3
v2

g
cos θ sin θ = 94 m

[0.5 pt].

(b) There are four forces: Fz, Ff , FN and T (in the rope). We write down force balance
in the x and y direction, and torque balance about the point where the line of T
intersects the horizontal (could take a different point here, same answer of course).
These give us:

FN = T sin θ,

Fz = Ff + T cos θ,

Ff
3

2
R = Fz

1

2
R.

[0.5 pt each]. The third equation gives Ff = 1
3
Fz = 1

3
mg. Substituting in the second

equation, we get T = (Fz − Ff )/ cos θ = 2
3
mg/ cos θ [0.5 pt]. Substituting that in

the first equation, we find FN = 2
3
mg tan θ [0.5 pt]. Since Ff ≤ µFN , the smallest

possible value of µ is µ = Ff/FN = 1
2

cot(30◦) = 1
2

√
3 [0.5 pt].

(c) The collision is elastic, so we have conservation of both momentum and kinetic energy
(labeling the velocities of the particles after the collision v3 and v4):

m1v1 +m2v2 = m1v3 +m2v4,

m1v
2
2 +m2v

2
2 = m1v

2
3 +m2v

2
4.

[0.5 pt]. Rewriting these to get all the m1 terms on the left, and m2 terms on the
right, we get:

m1(v1 − v3) = m2(v4 − v2),
m1(v

2
1 − v23) = m2(v

2
4 − v22).

[0.5 pt]. We can factor the second line to m1(v1− v3)(v1 + v3) = m2(v4− v2)(v4 + v2),
so we can divide the kinetic-energy equation by the momentum equation to obtain
v1 + v3 = v2 + v4 [0.5 pt]. Since we know three of these, getting the fourth (v4) is
easy; we can then substitute everything back in the momentum equation to get m2

(note the sign convention for the velocities: leftward is negative):

v4 = v1 + v3 − v2 = (6.9− 8.62 + 2.8) · 106 = 1.08 · 106 m/s,

m2 =
v1 − v3
v4 − v2

m1 =
6.9 + 8.62

1.08 + 2.8
(1 u) = 4 u.

[0.5 pt each].
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4 Rotating objects - 8 points

2R
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Figure 5: Four rotating systems.
a) Three children on a merry-go-
round. b) and c) Wagon wheel.
d) Hula hoop on a peg.

Two children with mass m1 = 10 kg and m2 = 10 kg
sit on a simple merry-go-round that can be described
as a solid disk of 100 kg with a radius of 2.0 m. The
merry-go-round is free to rotate about its center, and
initially does so with a frequency ω0 of 5.0 revolutions
per minute. A third child with mass m3 = 10 kg
runs towards the merry-go-round with a speed v0 of
1.0 m/s, and under an angle of 30◦ with the tangent
to the merry-go-round (see figure 5a). When arriving
at the merry-go-round, the third child jumps on it,
and afterwards spins around with the other two.

(a) Find the rotational velocity of the merry-go-round
after the third child jumped on it.

A wagon wheel is constructed as shown in figure 5b.
The radius of the wheel is R. Each of the spokes that
lie along the diameter has a mass m, and the rim has
mass M (you may assume the thickness of the rim and
spokes are negligible compared to the radius R).

(b) What is the moment of inertia of the wheel about an axis through the center, per-
pendicular to the plane of the wheel?

(c) For the same wheel as in (b), what is the moment of inertia for an axis through the
center and two of the spokes, in the plane of the wheel (figure 5c)?

(d) A hula hoop of mass M and radius R hangs from a peg. Find the period of the hoop
as it gently rocks back and forth on the peg (figure 5d).

Answers:

(a) The key to this problem is conservation of angular momentum [0.5 pt; also give these
points if angular momentum conservation is not explicitly mentioned but is used
correctly]. The total angular momentum before and after the third child’s jump are
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equal, and given by:

Lvoor = Lschijf + L1 + L2 + L3

= Ischijfω0 +m1R
2ω0 +m2R

2ω0 +m3v0 cos(θ)R

=

(
1

2
M +m1 +m2

)
R2ω0 +m3v0R cos(θ)

Lna = Lschijf + L1 + L2 + L3

=

(
1

2
M +m1 +m2 +m3

)
R2ω1

ω1 =

(
1
2
M +m1 +m2

)
ω0 +m3(v0/R) cos(θ)

1
2
M +m1 +m2 +m3

=
(50 + 10 + 20) · (5.0/60) + 10 · (1.0/2.0) · 1

2

√
3

50 + 10 + 20 + 10
= 0.12 s−1 = 7.3 rpm.

[1.0 pt for the correct expression for Lvoor, 0.5 pt for he correct expression for Lna, 1.0
pt for the correct calculation of the new rotational velocity (in rotations per second
(s−1) of per minute (rpm))].

(b) The wheel consists of two parts: a ring of mass M and radius R, which has a moment
of inertia Iring = MR2 about its center [0.5 pt], and eight spokes of mass m and length
R, which are rotated about their end, with moments of inertia Ispoke = 1

3
mR2 [0.5

pt]. The total moment of inertia is Iwheel = Iring + 8Ispoke = (M + 8m/3)R2 [0.5 pt].

(c) We invoke the perpendicular axes theorem: the moment of the wheel about an axis
through the center, perpendicular to its plane (Iz = Iwheel), equals the sum of the
moments of inertia about two perpendicular axes in the plane, e.g. the one shown
(which we’ll call Ix) and the one perpendicular to it (Iy) [0.5 pt]. Since by symmetry
Ix and Iy are identical in this case [0.5 pt], we have Iz = Ix + Iy = 2Ix and Ix =
Iz/2 = (1

2
M + 4

3
m)R2 [0.5 pt - Naturally, a direct calculation is also allowed, if the

found answer is correct].

(d) The frequency of a pendulum is given by ω0 =
√
MgL/I [0.5 pt]. We need the

moment of inertia of the hoop around a point on its edge. For this, we use the
parallel-axis theorem: I = ICM +Md2, with d the distance to the center of mass [0.5
pt]. The hoop has a moment of inertia of MR2 around its center, and thus a moment
of inertia of MR2 +MR2 = 2MR2 around a point on its edge [0.5 pt]. For the period
we get:

T = 2π/ω0 = 2π

√
2MR2

MgR
= 2π

√
2R

g

[0.5 pt].
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5 Thermodynamics - 11 points

We consider an ideal gas with adiabatic exponent γ = 4/3.

(a) Find the volume specific heat CV of this gas. Hint: CV is not (3/2)R, since γ 6= 5/3.
Here, you can use the fact that for any ideal gas, the difference between the volume
specific heat CV and the pressure specific heat CP is CP − CV = R.

(b) How many atoms are in one molecule of this gas?

We take a sample of this gas that occupies a volume of 5.00 liters, at a temperature
of 300 K and a pressure of 100 kPa. The gas is compressed adiabatically to 1/5 of its
original volume. Next, its temperature is brought back to 300 K while holding the volume
constant. Finally, the gas isothermally expands back to its original volume.

(c) Sketch the pV diagram of the cycle. Indicate any important points, and make sure
to put them at the right positions (i.e. calculate symbolically any values of p and V ,
and write down your calculations). Don’t forget to properly label your axes. Indicate
the direction of the cycle with arrows.

(d) In the second step of the cycle, do you need to cool down or heat up the gas to let it
return to its original temperature of 300 K? Explain your answer.

(e) Find the work done on the gas in the entire cycle.

(f) Could this cycle be used as a heat engine? If so, calculate its efficiency. If not, find
another application that it could be used for, and calculate its associated coefficient
of performance (COP = (what we get out)/(what we put in)).

(g) What should the total change in entropy of the cycle be? Explain your answer.

(h) By directly calculating, find the change in entropy in each of the three steps. (Note:
obviously, you can check your answer by summing the contributions of the individ-
ual steps to get the total change in (g). However, here you should calculate them
explicitly, not use what you know about the total change).

Answers:

(a) For any ideal gas, Cp = CV + R, and γ = Cp/CV = (CV + R)/CV . Substituting
γ = 4/3 gives CV = 3R [1 pt].

(b) By the equipartition theorem, we have 1
2
kBT per degree of freedom. By definition of

CV , we have CV = (1/n) dU/ dT = ((#dof)/2)(kB/n) = 1
2
(#dof)R [0.5 pt]. There-

fore, CV = 3R implies 6 degrees of freedom, which corresponds to a triatomic molecule
[0.5 pt] (three translational and three rotational dofs).

(c) V1 = 5.00 L, V2 = V3 = V1/5 = 1.00 L. Process 1 → 2 is adiabatic, so p2 =
(V1/V2)

γp1 = 855 kPa [0.5 pt]. Process 3 → 1 is isothermal, so p3 = (V1/V3)p1 =
5p1 = 500 kPa [0.5 pt]. The diagram is shown in figure 6. [1 point total for the
diagram: 0.5 for correct placement of points 1, 2 and 3, and 0.5 for correct drawing
of the lines and arrows. Subtract 0.5 if axis labels or units are missing.]
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(d) Method 1 : direct calculation. T3 = T1 (given), find T2 through ideal gas law:
p3/T3 = p2/T2, so T2 = (p2/p3)T3 = 513 K. Therefore, you have to cool down
going from 2 to 3 [1 pt].
Method 2 : Simply note that same volume, higher pressure implies higher tempera-
ture, so T2 > T3, and you need to cool down going from 2 to 3 [1 pt].
Method 3 : In an adiabatic compression, there is no heat exchange with the environ-
ment. Hence all work done on the gas must result in an increase in internal energy,
which scales linearly with the temperature. Hence the temperature increases, so
T2 > T3, and you need to cool down going from 2 to 3 [1 pt].
Method 4 : In an isothermal compression, temperature is constant, and pressure in-
creases according to pV = constant. In an adiabatic compression, there is no heat
exchange with the environment, and pressure increases according to pV γ = constant.
As γ > 1, this curve is steeper than the isothermal one (see also sketch at c). Con-
sequently, point 2 lies on a different isotherm than point 1 and 3, with a higher
associated temperature, so T2 > T3, and you need to cool down going from 2 to 3 [1
pt].

(e) We use that W = −
∫
p dV .

Process 1→ 2 is adiabatic, so pV γ = c, and p = p1(V1/V )γ, so

W12 = p1V
γ
1

1

γ − 1

(
1

V γ−1
2

− 1

V γ−1
1

)
= 1065 kJ

(or W12 = (p2V2 − p1V1)/(γ − 1) = 1065 kJ) [1 pt].
Process 2→ 3 is isovolumetric, so dV = 0 and hence W23 = 0 [0.5 pt].
Process 3 → 1 is isothermal, and the work done on the gas is negative, because
the gas does work when expanding. To calculate the work, we use the ideal gas
law, pV = nRT , with the rhs being constant here. Consequently p = p1V1/V , and
W31 = −p1V1log(V1/V3) = −805 kJ [0.5 pt].
The work done on the gas in the entire cycle is thus 260 kJ [0.5 pt - subtract only
0.5 point if sign in W31 incorrect but summed correctly to get final answer].

(f) Since it requires work to carry out this cycle, it cannot be used as an engine [0.5 pt].
Option 1 : The cycle could be used as an engine when run in reverse. In that case,
the efficiency is given by W/Qh, where Qh is the heat absorbed. Heat is rejected to
a cool reservoir during isothermal compression (process 1 → 3), and absorbed from
a hot reservoir during isovolumetric heating (process 3→ 2). In the latter process,

Q = ∆E = nCV ∆T = n3R(T2 − T3) = 3p1V1
T2 − T3
T1

= 1065 kJ.

Therefore, the efficiency is 0.244 [1 pt].
Option 2 : The cycle could be used as a refrigerator, extracting heat from some sample
in process 3→ 1 [0.5 pt]. What we want is Qc, the amount of heat extracted, which
for an isothermal process is −W , so Qc = 805 kJ. What we put in is work done on
the gas, W = 260 kJ, so the COP equals 805/260 = 3.10 [0.5 pt].
Option 3 : The cycle could be used as a heat pump, delivering heat to some sample
in process 2→ 3 [0.5 pt]. The amount of heat delivered is the same Qh as calculated
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Figure 6: pV diagram of problem 5c.

in option 1, Qh = 1065 kJ, and the amount of work done is still the total amount of
work done in the cycle, W = 260 kJ, so the COP equals 1065/260 = 4.10 [0.5 pt].

(g) Since the processes are all reversible, and the cycle is closed, the total change of
entropy should be zero [0.5 pt].

(h) We use ∆S =
∫

dQ/T .
In the adiabatic process 1→ 2, dQ = 0, and thus ∆S12 = 0 [0.5 pt].
In the isovolumetric process 2 → 3, dQ = nCV dT , n = p1V1/RT1, CV = 3R, so
dQ = (3p1V1/T1) dT . The entropy change thus equals

∆S = 3
p1V1
T1

∫
1

T
dT =

p1V1
T1

log

(
T3
T2

)
= −2.68 kJ

[0.5 pt].
In the isothermal process 3 → 1, T is constant, so ∆E = 0, ∆Q = −W , and
∆S = (1/T )

∫
dQ = ∆Q/T = −W/T = 2.68 kJ [0.5 pt].

[ NB: Naturally, these add up to zero. As explicitly stated in the question, that fact
may not be used to calculate one of the values of ∆S (so if they do, no points for
that part).]
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